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ABSTRACT

This report is concerned with optimum guidance for interplanetary
missions using either a high thrust or a low thrust engine. The guid-
ance problem is formulated as a problem in optimum control theory, and
control theory techniques are applied to its solution. For a high
thrust engine this involves the minimization of the total average velo-
city correction during midcourse for specified terminal accuracies in
the presence of initial injection errors, state measurement errors, and
control mechanization errors. The solution is first presented for the
case where (1) only one component of the position at the terminal time
is to be specified, (2) the information rate histories are specified in
advance, (3) there is negligible engine mechanization error, and (4) the
magnitude of the control is linearly related to the predicted miss dis-
tance. The solution is then extended to four separate cases, namely,
(1) the rms value of more than one terminal component is specified,

(2) the "information rate" histories (i.e., the rate of measurement and
the type of observations) are to be optimized, (%) engine mechanization
errors are taken into account, and (h) nonlinear feedback is allowed.

For the low thrust mission it is assumed that the engine is
operated at a constant specific impulse and that it is turned on only
in the vicinities of the departure planet and the target planet.

Hence, when leaving the departure planet, the optimization problem

involves reaching a specified energy and asymptotic angular direction
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with minimum mass expenditure (minimum time, in this case). When
approaching the target planet, the optimum turn-on time must also

be determined. The guidance problems for the low thrust mission

are solved by using a neighboring optimum control scheme, which
generates a linear feedback control law. For both high and low thrust
missions numerical and, in some cases, analytic results are presented
to serve as a gulde in evaluating the various optimum and sub-optimum

guidance techniques.
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1. INTRODUCTTON
1.1 Motivation

One phase of research in the field of future manned space flights
concerns the problem of guidhnce. A comprehensive presentation of feasible
guidance schemes and much of the work in navigation 1s contained in a recent
book by Battin.l* Broadly speaking, the problem of guidance is the deter-
mination of & control program which will steer the vehicle to its desired
destination. This control program will depend on the particular mission,
the measured information concerning the trajectory, and the way in which the
control is to be executed. An optimum guidance program is one which will
accomplish such a task in a most economical way. For our purpose, this
implies the consumption of the least amount of corrective propellant.

Hence, the problem of optimum guidance can be visualized as a search for a
control program which produces & correction schedule in a "best" fashion.

The control program uses & set of measured information concerning the tra-
Jectory and it must meet some fixed error criterion. This has the typical
form of & problem in optimal control, a field which has received considerable
attention over the past decade. It is, therefore, desirable to formulate

the problem of optimum guidance as a problem in optimal control and apply
control theory techniques for its solution.

The amount of corrective propellant, which is the measure of the per-
formance we have adopted, depends on the type of engines used for guidance.
We shall not be concerned with identifying the various types of engines, but
will, instead, classify them into two major groups - the high-thrust engine
and the low-thrust engine. This report is concerned with the problem of

optimum guidance for interplanetary missions using either a high-thrust

*References used in each chapter are listed at the end of that chapter.



engine or a low-thrust engine. Although both problems belong to the realm
of optimal control, the solutions in the two cases are very different. 1In
the high-thrust case, it is assumed that a separate engine is used after

boost to make the trajectory corrections. In this case, the propellant is
measured by the total amount of velocity correction required. By contrast,
in the low-thrust vehicle, the same engine is used for guidance as well as
for the actual mission. The propellant, in this case, is measured by the

total time during which the engine is on.

1.2 ObJective
The objective of this work 1s to provide:

o A mathematical model for studying the physical problem
of optimum guidance.

0 A solution of such a problem by formulating it as a problem
in optimal control and applying control theory techniques
for its solution.

0 Some numerical work to evaluate the various optimum and
sub-optimum guidance techniques.

It is hoped that the varlous solutions we have obtained will shed
much insight on future investigations in the field of interplanetary

guidance.

1.3 Outline

This report is divided into four chapters. Chapter 1 is the Intro-
duction. Chapter 2 considers the problem of optimum midcourse guidance
using high-thrust engines. It has ten sections giving the formulation of
the problem, the approaches, and the resulis of the various extensions of an

optimum guidance theory developed by Breakwell and Striebel.2 Chapter 3 con-



siders the problem of optimum guidance using low-thrust engines. Unlike

the work on high thrust, the guidance is assumed to take place only in the
viecinities of the departure planet and the target planet. No consideration
is given to the midcourse guidance in that the midcourse trajectory is
assumed to be determined by the energy and the asymptotic direction of the
vehicle leaving the vicinity of the departing planet. In view of the
distinct difference between the two cases, Chapters 2 and 3 are organized
s0 that they are self-contained. The last chapter gives a summary of the
results we have obtained in this study and recommendations for future inves-

tigations.

1.4  Summary of Past Work

During the past few years, there have been many published papers on
midcourse guidance for lunar and interplanetary missions using high-thrust
engines. As representative, we cite the work of Noton, Cutting and Barnes,3
Gates, Scull and Watkinsh concerning ground-based trackings, and the recent

7

work of Smith,5 Stern,6 Curdendale and Pfeiffer, Battin,8 and others for
proposing feasible guidance schemes allowing arbitrary information rates.
Among those who have attempted to optimize the trajectory correction schedule
are Lawden,9 Breakwell,lo and P.‘u.‘eiffer.]'l Iawden and Breakwell have found
solutions to the timing of the corrective impulses so as to require, on

the average, the least fuel expenditure for the special case where each
correction is a full correction (a full correction completely nulls out the
predicted miss-distance) and where the error in estimating miss-distance is
due entirely to an error in estimating the instentaneous velocity vector.
The solution of Pfeiffer, which is concerned with minimizing the terminal
miss-distance when a fixed amount of fuel is available, shows that the

timing of the corrective thrusts depends on the estimated miss-distance.



It also calls for full corrections. Since information prior to correction
is not perfect, it may be more economical to undercorrect. The only pub-
lished work on the problem of optimum guidance which results in an under-
corrective strategy and at the same time allows arbitrary information rates
appears to be that by Breakwell and Striebel.2 It was assumed that the
magnitude of the control acceleration is linearly related to the predicted
miss-distance. Their result shows that, in the absence of mechanization
errors, the optimum corrections are continuocus instead of discrete and the
optimum strategy involves an initial period of no control followed by a
period of continuous control and then a period of no control near the end.
In contrast to the work on high-thrust guidance, there has been very
little published work on the problem of guidance using low-thrust engines.
The first published work appears to be by Battin and Miller12 who have
devised a feasible guidance scheme for a variable thrust vehicle on a
lunar mission, assuming that guidance takes place both while spiraling out
from Farth and while approaching the Moon. In the area of midcourse guidance,
we cite the work of Pfeiffer13 who has considered such problems by using a
Penalty function which is equivalent to a quadratic form of the final state
vector. His solution is not optimum in the sense of meeting specified ter-
minal constraints. The recent work of Mitchelllh treats the problem by
linearizing along a predetermined optimum trajectory and uses a "method of
edjoints." Tt is not the same as the concept of second variation in the
calculus of variations which is the technique used in this report. The
difference lies in the loss criterion which comes naturally in the use of

second variation.

1.5 Notation
A. Unless otherwise stated, capital letters A, B, ... denote matrices

and small letters &, b,... denote vectors. Small letters with subscripts aij’

1-k



biJ (or 8, bi) denote elements of the matrices A, B (or vector a, b). The
transpose of the matrix A (or vector a) is denoted by A' (or a')_and
lalf =a a. | |

B. The references clted in each chapter are listed at the end of
that chapter.

C. Equations and figures in each chapter.are identified as follows:
Equation (I, J) (or Figure (I.J)) implies the J's equation (or figure) inv

the I section. There are no cross references among chapters.
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2, MIDCOURSE GUIDANCE FOR HIGH-THRUST INTERPLANETARY TRANSFER

2.1 Introduction

Consider & space vehicle which is in free fall following injection.
The only external controllable force acting on the vehicle is the thrust
during short bursts when corrections to the trajectory are executed.
Because the injection conditions are not perfect, the vehicle will depart
from its desired (or nominal) trajectory and it is the function of the
guidance system to: (1) perform messurements (whether on board or not)
from which the actual trajectory can be estimated, and (2) apply trajec-
tory corrections to insure the arrival of the vehilcle in the close viecinity
of the planet.

Lawdenl* and Breakwell2 have found solutions to the timing of cor-
rective impulses for the special case where each correction is a full
correction which nulls out the estimated miss-distance, and where the
error in estimating miss-distance 1s due entirely to an error in estimating
the instantaneous velocity vector. Their solution consists essentially
of an early correction to compensate for the initial errors and further
corrections, each two-thirds of the remaining distance to the target.

B&tt1n3

has proposed a criterion for the timing of the corrective action
based on the ratio of the required velocity correction to the uncertainty
in estimated miss-distance, agaln assuming that cach correction is a full
correction. Battin's solution, although valid for arbiltrary information
rates, does not minimize the total velocity corrections. The solution
obtained by Pfeifferh (vhich is concerned with minimizing the terminal
miss distance) shows that the timing of the corrective thrusts depends

on the estimated miss-distance. It also calls for full correctlons.

*References referred to in this chepter are listed at the end of this
chapter.



Since information prior to & correction is not perfeet and further
corrections will, in general, be required, it mey be more economical to
under-correct. This report, therefore, re-examines this problem of opti-
mum guidance (i.e., the problem of minimizing the total average velocity
correction for specified rms terminal asccuracies in the presence of
initial injection errors, state measurement errors and control mechani-
zation errors) by formuleting it as a problem in stochastic optimal con-
trol and applying control theory methods for its solution. It results in
8 theory which is applicable to arbitrary information rates and in the
same time minimizes the required average total velocity correction con-
sistent with a specified reasonable terminal accuracy. We shall concern
ourselves to cases involving errors only in the plane of the transfer
orbit.

The original work following this approach was done by Breakwell
and Striebel5 in a paper entitled "Minimum Effort Control in Interplane-
tary Guidance." It was assumed that the magnitude of the control acce-
leration is linearly related to the predicted miss-distance and points
in the direction of maximum effectiveness. The paper showed that, in the
absence of mechanization errors, the optimum corrections are continuous
instead of discrete. The solution is easily computable in terms of
general information rates. We shall call this the Basic Minimum Effort
Theory and, for the sake of completeness, include a brief review of the
theory in this report. The remaining parts of this report are devoted
to various extensions of this basic minimum effort theory.

The assumptions necessary for the development of the basic minimum
effort theory were:

o The rms value of only one component of the position at

terminal time is specifiled.



o0 The magnitude of the control acceleration is linearly

related to the predicted miss-distance.

o The information rate histories are specified in advance.

0 There is negligible engine mechanization error.

This basic minimum effort theory is applicable to the problem of variable

time-of-arrival guidance assuming that all errors lie in the

transfer

plane. For example, consider the following problem: Suppose that a

vehicle travels along & heliocentric ellipse which meets with a planet

(whose gravity field is ignored) moving in the same plane as
Suppose further that the starting position (Earth) is known,
veloclity vector is imperfectly known, and that it is desired
the distance of closest approach but not (directly) the time
passage. Then, if the x-axis is chosen perpendicular to the

velocity of approach to the planet (see Figure 1.1), it is

the vehicle.
the initial
to control
of closest
relative

desired to

control x(T) but not y(T), where T is the nominal time of arrival.

y x
\\//
|
o
/
/

°\
PLANET /S

VEHICLE

7\

- —”o

Figure 1.1

Various extensions of the basic minimum effort theory were

developed removing one or more of the many assumptions described above.

The various extensions undertsken ere listed as follows:
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o Extension of the theory to the case when the rms values of
more than one terminal component are specified.

o Extension of the theory to include the case when engine
mechanization errors are taken into account.

0 Extension of the theory to include the optimization of the
information rate histories (i.e., the rate of measurement
and the type of observations).

o Extension of the theory to the case of allowing nonlinear
control (i.e., remove the essumption of linear feedback).

No attempt is made in combining these various extensions to form a unified
general theory since the computation involved in getting & solution for
the general theory is prohibitively complicated.

This chapter is divided into ten sections. Section 2.1 in the
Introduction. The mathematical statement of the optimum guidance problem
and the equations for estimating its trajectories based on noisy observa-
tions are given in Sections 2.2 and 2.3. Section 2.4 introduces the
concept of linear control. The various extensions of the basic minimum
theory listed above as well as a review of the basic theory are given in
Sections 2.5 to 2.9. Each of these sections is, more or less, self-con-
tained. In general, we give in each section the solution of the problem
we have proposed, its method of solution and usually a simple example
illustrating the results derived in that section. The example used for
illustration in all cases is & simple one-dimensional model analogous to
the approach to a planet where the only available observation is the
vehicle-planet direction. In Section 2.10, we report some related work
in connection with the epplication of the basic minimum effort theory
that 18 not specifically required by the contract. The related work con-
sists of the development of a large digital computer program which applies

the basic minimum effort theory to the study of guidance problems in typical

2-4



interplanetary trips. A brief description of this program and the computer
results giving the velocity requirements for two typical transfers (Earth-

Mers and Earth-Venus-Mars swingby) are given.
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2.2 Mathematical Statement of the Problem and the Separation of Estimation
and Control

A. The Statement of the Problem
We shall assume that wé have a precomputed nominal trajectory
and that the departures of the velocities and positions from this nominal
trajectory are sufficiently small so that & linearized model evaluated
along this nominal path mey be used to describe the dynamics of the
vehicle. The measurement information will be ldealized as continuous
and it also suffices to represent the measurement by the deviation of the

actual observations from its nominal value,.

Given:

(1) The linearized equations of motion describing the dynamies

of the vehicle in the neighborhood of the nominal trajectory,*

dx

T = F(8) x(t) + 6(¢) u(t) (2.1)

(2) The idealized continuous observations,

y(t) = M(t) x(t) + e(t) (2.2)

where x(t) a state n-vector (n < 6) representing the difference

between the actual trajectory and the nominal trajectory.

y(t) = an observable r-vector representing the difference
between the actual observation and the nominal
observation.

u(t) = control m-vector (m < 3).

€(t) = a random r-vector accounting for the additive

measurement error.

¥Equations given in this chapter ere numbered as follows: Eq. (k, J) means
the J equation in Section 2.k.
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The elements of the matrices F(t), G(t) and M(t) are essentially the
partial derivatives evaluated along the nominal trajectory. The random
disturbances are assumed to be normally distributed with zero mean and

covariances.

cov ( e(t), e€(s)) = R{t) 8(t-s) (2.3)

where $(:) is the dirac delta function. The elements of the rxr matrix
R(t) are functions of the accuracies and the rate of measurements. We
shall assume R(t) is positive definite.

(3) The initial uncertainty x(0) is & zero mean, normally dis-

tributed random vector independent of  €(t) with covariance

cov (x(0)) = v(0) (2.4)

(4) A pxn matrix H(p <n), a nominal arrival time T and a loss

function

» T
Loss = S. ’ E || u(t)]] at (2.5)

o]
where E(:) indicates the averaging operator.
Problem. Find the control u(t) as a function of all the past observations
y(8) 0 <8 <t which minimizes (2.5) for specified values of cov(Hx(T))ii;
{ =1,2...p . In other words, the rms values of p of the n states at the
nominal arrival time are to be independently controlled.*
Remark. Equation (2.5) 1is not the same as the total average velocity

correction which is given by

T
Ej llh(t)ll at (2.6)

*With the exception of Section 2.5, all the work to be reported is concerned
with the case where p = 1.
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A slightly modified criterion 1s used here because the expected amount

of total velocity correction given by (2.6) can be expressed only in the
form of an infinite series when p > 1. This modified criterion (2.5),
which 1s the integral of the square root of the variance of the command
accelerations, 1s, we feel, a most reasonable replacement for the criterion

(2.6). It has the properties that

(1) it reduces to the exact amount of total velocity

requirements in the absences of random disturbances,
(2) it reduces (except for en unimportant factor of 4[:§L )

to the same criterion given by (2.6) in the case when p=1, and
(3) it sets an upper bound to the expected totel velocity

correction, i.e.,

T

T
J ’E”u(t)”z at z EJ /Hu_(t)H2 at (2.7)

(e}

vwhich can be easily verified by application of Schwarz's
inequality.

B. Separation of E:timation and Control

What we have just stasted 1s a combined optimization problem in
estimation and control. In other words, we have, at time t, all the
measurements up to this time. The problem is how to meke use of this set
of data to devise a trajectory correction schedule which meets the optimi-
zation criterion. We shall assume that this combined problem in estimation
and control can be trecated separately in terms of a problem in optimum
estimation and a problem in optimum control. We shall first obtain an
estimate of the actual miss of those components whose terminal accuracies

are to be controlled and then design the controller depending only on thesc

estimated miss components. This is an assumption since the control which
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is allowed to be a function of all the past observations cannot, in
general, be replaced by one which is a function of only those estimated

miss-components.
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2.3 Optimum Estimation

Since we have assumed that the linear model is sufficient to describe
the dynamics of the vehicle as well as the measurement histories in the
vicinity of the nominal path, the technique developed for the optimum
linear estimation can be used. The method is based on the work of Kelman
and Bucy6’7 vwhere the estimates are updated at each observation time by
using the best predicted estimate at this time and the new set of data just
received. Only the results will be given here. The derivations may be
found in References 6 or T.

Let R(t) be the optimum estimate of x(t) defined by
2(t) = E (x(t) // y(s) , 0 <8 <t and the past controls) (3.1)
and let V(t) be the covariance of the estimation error
A
v(t) = cov (x(t) - X(t) ) (3.2)
Yhen V(t) satisfies the matrix differential (Riccatti) equation

Aav

= = FV+VF -VM BRIV (3.3)

and the best estimate x(t) satisfies the differential equation

B | pe) K1)+ o6 ult) +K(E) (y(t) - ML) ) (3.4)
where
K(t) = v(t) M (t) B (¢) (3.5)
Moreover,
cov (X(t), x(t) - &) ) = o (3.6)

Initially, Q(O) = 0 and V(0) is given by the apriori information concerning

the uncertainty of x(0).
Note Q(t) is the estimate of the state at time t based on all the data

up to time t. This can be used to compute the estimate of the actual miss
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(i.e., the p components whose final values are to be controlled). To do

this, we introduce the nxn transition matrix

B(r, 1) = =4

which satisfies the matrix differential equation
dad (T,t
28 (L) _ _g(r, ) F(t) 5 B (T, T) =T (3-7)

where I i1s the identity matrix. Define
x(T, t) = & (T, t) x(t) (3.8)
and

X(T, t) = E [x(T, t) / y(s) O <& <t and all the control < t :]

= & (T, t) %(t) (3.9)

Physically, &X(T, t) is the predicted miss of the state at the final time
based on all the data up to time t and under the assumption that no addi-
tional control is applied over the interval (%, T). It follows that the
components of H‘Q(T, t) are the predicted misses whose terminal rms values
are to be controlled.

Our assumption of the separation of control and estimation means
that the control acceleration, which executes the trajectory correction,
is only a function of H Q(T, 4+). Using (3.4) and (3.7), it is seen that

H ’:?(T, t) satisfies the differential equation

—‘l—’*’?—gf—ﬂ = H& (T, t) 6(t) u(t) + HE (T, t) n(t) (3.10)
where
NE) = v(e) M'(e) BHE)  (v(e) - M(t) X(t) ) (3.11)



which may be considered as & white noise with covariance matrix
o
cov (M(t), W(s)) = V(t) I(t) V(t) &(t-s) (3.12)

where

T(t) = M'(8) RN (6) M(t) | (3.13)

and can be physically interpreted as the information rate matrix.
In summary, the procedure may be broken down as follows:

(a) Obtain an estimate of the actual miss by integrating the
differential equation (3.10) where y(t) is the deviation of the actual
observation from its nominal value.

(v) Decide the size of the trajectory correction required at
this time. The dependence is only going to be a function of H Q(T, t).

It is interesting to point out that all the strategies to be discussed are
not full corrections. A full correction is one which totally nullifies the

estimated predicted-miss.



2.4 Linear Control lLaw

One way of solving the stochastic optimal control problem stated in
the previous section is to define some meaningful.average quantities and |
solving an equivalent deterministic problem using these average quantities
as the states. It turns out this technique can be fruitfully used if we
confine ourselves to linear control laws, i.e., the case where the control
depends only linearly on the predicted miss H‘Q(T, t). It will now be shown
that this assumption on linear control allows us to formulate the given
stochastic optimization problem as an equivalent deterministic optimization
problem using the elements of the covariance matrix of H Q(T, t) as the
states.

Assume linear control and we may, without loss of generality, repre-

sent the optimal linear control law by
u(t) = -5(t) H X(T, t) (. 1)

where S(t) is a mxp matrix whose elements are to be determined such that

(2.5) is minimized for specified values of

cov (# K1)y, = cov (H %(T, ™)) 1=1,2..p

i1’
Define
Pt) = B [m%(r, 0 §'(r, ©) r' ] (4.2)
which is equivalent to cov (H %X(T, t)) since Q(T, t) 1s & zero mean process.
ILet W(t) be the covariance of the error in the estimate miss Q(T, t). Then
w(t) = cov (x(T, t) - X(T, t)) = & (T, t) V(&) & (T, t) (&.3)

Using (3.2), (3.10-3.12) and (4.1-k.3), it is seen that

9% = -H& (T, t) c(t) s(t) P(t) - P(t) s'(¢) ¢'(t) &'(T, ¢) B'

+HWE (5, T) Ht) & (¢, T) wH (4.1)



g—z =-wa& (t, T) I(t) & (t, T) W (k.5)
cov(H x(T) ) = P(T) + HW(T) H' (4.6)
and
2 ~ 2
E Jju(t)|] = E ||-s(t) a%(T, t)|] = tr p(t) s'(t) s(t) (&.7)

where tr(.) denotes the trace operator.

Now that the last term of (4.6) 1s independent of the control, it follows
that specification of cov (H x(T))ii is the same as specifying Pii(T) and
the determination of S({t) is equivalent to solving the following deterministic

optimization problem.

Given: The dynamic system (k.4) with P(0) = 0, find S(t) which

minimizes
T

j J tr P(t) 8'(t) s(t) at (4.2)

for specified values of Pii(t) , 1 =21,2,..., D,

Inspection of (4.4) and (4.8) shows that both are linear in S insofar
as the magnitude is concernmed. This is a "degencrate" (or singular) problem
in the calculus of variations and special techniques are usually necessary
for the method of solution. 1In general, the optimum solution will consist
of different subarcs connected at a finlte number of points, called the
corner points, and the problem 1s essentlally of finding various arcs, the
corner points, and the proper arcs to follow between corner points.

The basic minimum effort theory as developed by Breakwell and Striebel5
is concerned with the case of p = 1. For the case p = 1 (i.e., controlling
only one terminal miss), this problem can be solved by application of Green's
Theorem.E3 For the case p >1, Green's Theorem cannot be applied. It turns
out that, for this particular problem, the solution can be obtained by the

use of the maximum principle. Clearly, the case p = 1 can also be obtained
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using maximum principle,

We now give the solution of the optimal control law stated above.
Since the work in this report represents various extensions of the basic
minimum effort theory and since the solution by Green's Theorem does pro-
vide a different and in fact more elegant way of solving the problem for
p = 1, we also include, for the sake of completeness, in this report
(Section 2.6) a review of the method of solution as was originally derived

by Breakwell and Striebel.



2.5 Optimal Control Law for Controlling Several Terminal Components
(Maximum Principle)

This section obtains the solution of the optimal feedback gain matrix
S(t) by direct application of the maximum principle. The presentation is
divided into three parts. Section 2.5.1 gives the necessary conditions for
the optimal linear control and the characteristic of the optimal feedback
coefficients. It 1is shown that, in general, the optimum linecar corrective
strategy consists of an initial period of no control while the information
catches up. This is followed by & period of continuous control and
finally & period of no control and possibly en impulse at the end. A
computation procedure is outlined for obtalning the optimal feedback gains.
Section 2.5.2 specializes the result to the case of p ='1. It is included
here for the purpose of establishing an equivalence between the results
in this section and that obtained originally by Breakwell and Striebel
using Green's Theorem. (A review of the basic minimum effort theory (p = 1)
using Green's Theorem is given in Section 2.6.) Finally, in Section 2.5.3

we illustrate the results by giving two examples.

2.5.1 FEquations for Optimality and Computation Procedure

To put in evidence the "singular" nature of the problem stated in

*
the previous section, we define

g(t) = JtrpPs's ;5 gk) =20 (5.1)

and let the matrix of feedback gains be written as

s = ¢(t) B (5.2)

*
For convenience, we shall hereafter omit the argument t.

*This substitution essentially converts a control problem potentially singular
in mxp variables into & problem which is singular in only one variseble.
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vherc B is an undetermined mxp matrix (undefined when ¢ = 0) such that

tr PB'B=1 (5.3)

Substituting (5.2) into (k.4) shows

%%=-¢(t) HMacBP+PB ¢ & ®') +q (5.14)
where
Q = HEVIVE H (5.5)

is a known function of time. The problem now reduces to that of finding B
T

and ¢(t) =2 0 , which minimizes 5 ¢ dt subject to (5.3) and specified
(o]

values of P, (7).

Iet the Hamiltonian be given by

g(t) + tr ATD/2 (5.6)

where the elements of the pxp symmetric matrix A are the adjoint variables.
For a given @(t) £ 0 , winimizing this Haniltonian with respect to B subject
to the constraint (5.3), is a simple, nondegenerate problem in calculus of

variation. The nccessary cquations for optimality are
q Y

B = G & U A (5.7)
JtrPAZA
.. fuEarrPAD L (5.8)
M tr PAZA
and
a A
& - f) —LEA (5.9)

,ftrPAzA

vhere Z = H& G G & H' and is a given function of time.



The transversality conditions are A ij(T) =0,1i¢3; kii(T) = ¢y,
i=1,2..., p, where ¢, are to be adjusted such that Pii(T) meet the pres-
cribed values.

The Homiltonian now becomes linear in $(t) and can be written as

g(t) (- JtrPAZA) + trAQ/2 (5.10)

4 only remains to minimize this Hamiltonjan with respect to ${t). Since
@(t) =0, it follows that § = O if tr(P A 2 A)< 1, is undetermined if

tr{P AZ A) = 1, and is infinite if tr(P A Z A)> 1. The last case cannot
occur over any Tinite interval since otherwise J- g(t) at will diverge.
Now tr(P AZ A) = 0 at t = 0 and can be shown toobe continuous for any

@(t) 20 including impulscs (i.e., $(t) are Dirac delta functions). Hence,
the case tr(P A Z A})> 1 cannot occur and we are left with either ¢ = 0

(when tr(P AZA)Y< 1), or § # O, in which case tr{(PA Z A)= 1.

Tt turns out that the optimal gain S consists of (in general, but not

always) three portions; an initial period of no control where S = O, followed
by a period of continuous conlrol, and finally a pericd of no control and

possibly an impulse at the end. ILet us now conslder the two cases.

(1) ¢(t) = 0. =Equations (5.8) and (5.9) reduce to

<

%\-— = 0 (5.11)
and

ar _

5T = 9 (5.12)

which show that the adjoint varilables remain unchanged during this period.

(2) ¢(t) £ 0. Then

trPAZA =1 (5.13)

This defines a surface which must contain the solution whenever @ # 0. We
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novw note that in order to integrate the set of equations (5.8) and (5.9)
along this surface, it 1s necessary to express $(t) in terms of P and A .
This is done by twice differentiating (5.13). It 1s of interest to note

that along this surface ¢(t) is also given by

#(t) = trP A (5.14)
which can be verified by combining (5.9) and (5.13). It is a measure of
the average "acceleration" and vanishes only when S = O, or equivalently,

A = constant.
Differentiating (5.13) once, using (5.8), (5.9), and the commutative

properties of the trace operations, we find

tr (PAZA + QAZA ) =0 (5.15)

Differentiating (5.15) once more yields a relation between P, A , and

@(t) which, after suitable reduction, can be written as

3(t) _ -tr (PQAZA + QAZA + PAZA ) (5.16)
. 2tr (QAZANZA )

We now have the necessary conditions, namely (5.8), (5.9}, (5.13), (5.15)
and (5.16), for computing the optimal feedback gaeins. It 1s noted that the
denominator in (5.16) is the trace of the product of two positive semi-definite
symmetric matrices and hence 1s always 2 0. Tt will be assumed to be > 0O
in this paper. 1In other words, the matrix Q A Z A Z A is not identically
zero.

Since P(0) = 0, it follows that (5.13) cannot be satisfied at t=0.
Hence, $(o) = O and there will be an initial period of no control. The time
by which the control is first turned on depends on (1) the informetion rate
which is imbedded in Q, and (2) the initial values of /A . Mathematically,
the exact time of turning on 1s determined by simultaneously satisfying

(5.13) and (5.15). It should be noted that satisfaction of (5.15) determines
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-the time. The common multiplicative constant of the adjoint variables is
determined by the normalizing equation (5.13).

Computation starts by guessing an initial set of J\(o) and integrating
the dynamic equation (5.12) forward until (5.15) is satisfied. This determines
ton . Use is then made of (5.13) to campute the normalizing constant which
determines the adjoint variables at the time of turning on. We are now on the
surface such that § # 0. To proceed along this surface, we use (5.16) to find
@(t). This is then used in (5.8) and (5.9) to integrate the equations for P
and N forward. The optimal feedback gain can be obtained by using ¢ and
(5.7). Assume that the control is turned off at some time t, say topr 2 ton .

Then S(t) = O for t > t The total average velocity correction required

£f °
is given by
toff
g(t) dt (5.17)
t
on
and
AN = Nt gp) (5.19)
T
P(T) = Pltyep) + f Q(t) at (5.19)
toff

The computational procedure we have proposed gives a parametric study of
p(p + 1)/2 elements consisting of the ratio of the initial adjoint variables

and t_,. 8s functions of the p(p + 1)/2 elements of P(T). ILet

£t
A(t) = P(t) + H& (T, t) V(t) &' (T, t) H' (5.20)
Then A(t) is the covariance of the actual terminel miss when the control is
turned off at t. Hence, without loss of generality, we may consider that the
paremetric study is between the p(p + 1)/2 elements consisting of the ratio

of the initial adjoint variables and t .. end the p(p + 1)/2 elements of

2-20



A( If the diagonal elements of A(toff) for all t .. s(ton, T) do not

toff)'
meet the specified values, the computation is repeated again with an improved
estimate of A (0).

It should be noted that the camputation procedure we have outlined
assumes that the computed @(t) > 0. 1In the event that @(t) becomes negative
for some t e(ton » toff)’ then there exists periods of no control in the inter-

val (t Physically, this implies that it is not possible to follow

on’ toff)'

the critical surface defined by (5.13). Assume t, is the first time that

¢(t1) < 0; then the control must be turned off at some time t before t The

1°
problem here 1s to determine the exact times of leaving the surface and inter-
cepting the surface again. This can be done by using the criterion that the
adjoint variables must remain constant during the time that the control is
off. It is equivalent to the searching of a normalization constant which
must remain the same at the two points. An iterative scheme taking care of
this can be easily implemented on the digital computer. This is 1llustrated
in one of the numerical examples given in the next section.

So far we have avoided the possibilities of impulsive corrections, i.e.,

S or @(t) are impulses, Impulsive corrections give rise to discontinuities in

P and f\ . Iet de be the incremental effort. Then

de = ¢(t) at (5.21)

so that the effort due to this impulsive correction is

t+
Ae = J. g(t) at (5.22)

Using the effort &s the independent variable, (5.8) and (5.9) can be

written as

ggﬁ = AZA (5.23)
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and

dp
de

= - (ZAP + PAZ) (5.24)
The relation between the amount of the impulsive effort and the jump (or drop)
in A (or P) can therefore be obtained by directly integrating (5.23) and
(5.24) with respect to the effort. Using (5.23) and (5.24), we find

d tr (TAZA) - 0 (5.25)

de

which implies that impulsive corrections leave tr (PAZA) invariant. In fact,
(5.25) is true for any initial values of tr (PAZA). This, incidentally, is
necessary for establishing the fact that tr (PAZA) is continuous. We shall
now show that impulsive corrections can be applied at to if and only if Q(t)
is discontinuous at to.

Assume that an impulse is applied at t_ and Q{t) 1s continuous at g
The time derivative of tr (PAZA) is tr (PAZA + QAZA) which, immediately after

the impulse of area L[, is given by

tr (PAZA + QAZA)

E
. j d tr (PAZA + QAZA) de (5.26)
de

ta e}

Now, the first term in (5.26) is zero since we were on the singular surface at
t, + Using (5.23) and (5.24) we see that the second term in (5.26) can be

written as

E
2 J tr (QAZAZA) de (5.27)

o
which is greater than O in view of our assumption that QAZAZA is not identi-
cally zero. This implies that tr (PAZA)will be greater than 1 for t > to , Which
is not permissible. Hence, impulsive corrections cannot be applied at any time
when Q(t) is continuous. (This is the same as requiring that the Hamiltonian
be continuous). On the other hand, assume Q(t) is discontinuous at t,. Inspec-

tion of (5.15) shows that it can be satisfied only if P and A are discontinucus at ts
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Hence, impulsive corrections are allowed to occur when Q(t) is discontinuous
or at the final time since our argument does not apply there.

Remark 1. ITn most cases, the optimal corrective strategy consists of
an initial period of no control, followed by & period of continuocus control,
and finally a period of no control and possibly an impulse at the end.
Corresponding to that A (0), the possibility of periods of no control between

t and t
(o)

on vhen @(t) > O for all-t e(t

o on ’ toff) can be established easily

by computing the quantity (tr P(t')A(t)Z(t')A(t) -1) for all ¢' > t, t e(ton ,

toff)' If it differs from zero, then it can be concluded that there do not

exlst periods of no control between t and ¢ .
on off

Remark 2. It 1is not clear whether or not there exists different 1nitial
values of the adjoint variable which will give rise to the same terminal condi-
tions. This 1s the problem involving uniqueness of our solution and as such
has not been solved.

Remark 3. Tt will be shown in Section 2.5.2 that in the case of con-
trolling only one terminal component, the solution we have obtained is unique

and that there exist no periods of no control between t_ and t .. if g(t) 1is

positive over this period.
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2.5.2 Special Case of Controlling Only One Terminal Miss

This section specializes the results to the case where the rms values
of only one of the states at the terminal time is specified. It is included
here to establish an equivalence between the solution by meximum principle
(as we have done) and that by using Green's Theorem (as was done by Breakwell
and Striebel5 (see Section 2.6 also). Without loss of generality, 1t will be
assumed that the particular terminal miss we wish to control is the final
uncertainty in the position, say pll(T). In other words, H is & n-vector
consisting of all zero elements except hll = 1.

Iet the scalar z.. = H3GG'$'H' be denoted by D2 where D 1s the sensi-

11
tivity of the miss distance to a change of velocity 1n the direction of the

correction. From (5.8) we see that pll(t) satisfles the scalar differential

equation
dp
11
— = - 28(t) D(t) /Py *apy (5.28)

On the other hand, FEquations (5.13) and (5.15) become

P1q 7\11.2 ! (5.29)

and

2 . 2 -
\j; (DD py; +qy, D) = O (5.30)

respectively. It follows from (5.30) that ton is determined by the equation

+
Ioon apy (%) @t = ppy* (8,) (5.31)
where*
Dq
¥* 11
P, (t) = - ; (5.32)
11 -5

Also, for a given pll(T), t_pp 18 determined by

*This is called the critical p curve by Breakwell and Striebel.?
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T
Pt o) + j 4, (8) at = o, (1) (5.33)
t

off

Moreover, the optimal solution must follow the critical curve defined by

(5.29) if

B(t) = py,* X, >0 te (b 5 tope) (5.34)

This can be seen &s follows. Assume (5.34) is true. It can be easily verified

that this implies

o 9
pll < q'll 2 te (ton ) toff) (5’35)

Suppose for some t' where ton <t' < to e’ we leave the critical curve.

f
Then the control must be turned off and for t > t'

t
_ *

b (8) = py *(e) + ft, q;,(s) ds (5.36)
which by (5.35) is greater than pll*(t). Hence, the given terminal pll(T)
cannot be satisfied. In other words, we cannot come back to the critical
curve after leaving it. This establishes our assertion.

Suppose (5.3&) is not satisfied. Then there existis an Interval

within (ton > such that the control must be turned off. This corresponds

toff)
to the case of an unusual increase in the information rate. Let ta and 'l:b be
the times of turning off and on, respectively. Since the adjoint variable

must remain constant during the time that the control is off, we see from

(5.29) that

b () 0P (t) = b * (1) D (&) (5.37)
Moreover,

a1y (ta) = a5, (tb) (5.38)
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which is obvious since all(t) is the actual terminal miss if no control is
applied after t. [Equations (5.37) and (5.38) provide sufficient conditions
for determining the times ton and toff' In other words, optimum transition
corresponds to double points in the all - D /511 plane., It is of interest
to note that in the case of the control of only the terminal velocity, the
optimum solution, according to our theory, is an impulse at the final time.
This solution is certainly correct since the effort necessary to nullify the
velocity error remains constant in (0, T) and hence the optimal solution is

the one in which all the information 1s collected before applying the control.
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2.5.3 Two Simple Examples and the Computer Results

A, Controlling the Position and the Velocity of a One-Dimensional Model*

Consider a space ship which is "homing" with constant velocity Ve On
a massless planet interrupted by velocity impulses perpendiculer to the nomi-
nal straight line approach to the target or else by a continuous acceleration
u in this perpendicular direction. ILet X, and x, be the transverse position

and velocity deviations from the nominal orbit. The equation of motion (see

Figure 5.1) 18 therefore

-_—

KNOWN POSITION TARGET

Figure 5.1 A Straight Line Model

*'I'his seme straight line model will be used for all the other numerical work
in this report.
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X = X
. (5.39)
X = u
The 2x2 transition matrix for this example becomes
1 T-t
8 (T, t) = (5.40)
0 t

The initial error is to be only in velocity (i.e., vll(O) = v12(0) = 0). It
is assumed that the Information rate is purely positional and that the estimates
of the transverse position are obtalned by angle measurements at frequent inter-

vals At with constant accuracy O Hence,

b'q
1
yl =0 = - v'_ (T_t) + el(t’) (5’)'"1)
f
and the information rate matrix becomes
B 1
) 5 0
vf2 o © at (T-t)
o €
I (t) =
(5.42)
0 0

f2 cre2 At may be related to a dimensionless information rate

parameter k defined for this example by

The product v

=L
10 v22(0) T

X = (5.43)
vf2 At ce2

This parameter compares the incoming information with the & priori information
(v22(0))-1 about the initial velocity error. We shall assume that the variances
of both the position Xy and the velocity x2 are gpecified at T.

Using (4.5) and the information rate matrix given by (5.42), it is
found that an analytical expression may be obtalned for the covariance

matrix W(t). It can be easily verified that
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2

o t 2
v, (8) = - W (5.44)
11 v 2 °e2 s (1-3)°

t
1
wlz(t) = T wll (5'1“5)
1
wpol®) = Ly (5.146)
with initial condition wll(O) = véa(o). Solving (5.44), we find
-1 -1 1
v (t,) = w (t,) + (B, - t,) +
11 2 11 1 vf2 062 At TZ [ 2 1
T-%p i 7
2T 1°g<'1‘-tl> * T-t, ~ T-%; ] (5.47)
Moreover, -
(r-¢)2 (1-t)
z(t) = (5.48)
J (T-t) 1

{
For the numerical values, we let (v22(0)§é = 100 m/sec, T = 106 sec, and k = 1.
Realistic values of k would be much higher and lead to earlier reduction of
the predicted miss. For example, if v, = 3 kn/sec and At = 1L hr, then k = 1

implies O = 0.32 degree.

Computation Procedure and the Numerical Results

It can be shown that the adjoint variables are monotonically increasing'

functions of time if A., > O. (A,, and k22 are always positive.) Since

11
xlz('_r) = 0, we must let 112(0) < 0 so that A, is negative at the time of

turning on the control. Moreover, the control must be turned off at the time

2-29



when A,, reaches zero and not turned on egain until possibly at the terminal

12
time. It was shown in the previous section that an impulse may be applied

at the final time if (5.13) is satisfied. In our case, this implies

122 (1) ppp (T) = 1 (5.49)

It should be noted that an impulse at T brings down p22(T) and cannot change

the values of A;, , A;; , &nd p,, . Using (5.23-5.24) we find at time T

dpyy
3e — " 2Py M (5.50)
and
axr
22 .2
= = Mo (5.51)

where de is the incremental effort due to the impulse. Using (5.50-5.51) and
the fact that (5.&9) must be satisfled befbre and after application of the

impulse, we find

)Y
effort due to the impulse = Tl—_— (1 - ' p—2$ ) {5.52)
22 22

where p,> and pgg denote the values of E(xg (T)) immediately before and after
the impulse, respectively. Hence, if ng = 0 (corresponding to perfect velocity
control), then the additional effort required is Jpzé (T). We shall assume that
the desired Poo (T) = 0.

The actual computation proceeds as follows:

1. Let l12(0) = -1 and guess hll(O) and X22(0).

2. TIntegrate (5.12) until (5.15) is satisfied. This detemrnines t o
3. Use (5.13) to determine the value of A at t.

4. TIntegrate along the surface by using (5.8-5.9) and (5.16)

until x12 = 0.
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5. Turn off the control until T. This determines P(T) and is
a possible solution. But p22(T), in general, will not be
zero. Note that A(T) remains the same as at the time that
the control was turned off.

6. If (5.49) is satisfied, an Impulse is applied at T to bring
p22(T) to zero. The additional velocity required is Jp,{T).

7. If (5.49) 1is not satisfied, we repeat the procedure again

wlth a different guess of xll(o) and xze(o).

The results arc glven in Figures 5.2-5.4 with the corresponding curves
identified by the symbol ME2. Figure 5.2 gives the plot of pll(T) (which
is the same as a,,(T) since V(T) = 0) versus the total effort. It is
seen that most of the expended. effort appears near the beginning of the trip
and near the end of the trip when very high terminal accuracy is required.

A typical plot of the history of Ajk;;;zij versus time to go 1s given in

Figure 5.3 for the case where _/ all(Ts = 1530 km. Note the period of no

control and the impulse at the end. The corresponding total velocity required
as a function of the time to go is shown in Figure 5.4. The jump at T is due

to the impulsive correction.

In order to get a "feeling" for these numbers, we include, in the same
graph, some typical values obtained from other solutions. The two solutions
we have used asre the Quadratic Loss (to be denoted by QL) and the Minimum

Effort for controlling only the final position (to be denoted by MEL).

QL: This 1s the problem of minimizing

E If | ja(t) IF at = IT tr Ps' s at

for a specified P(T). The solution of this problem is well kncwn.9 Let the

solution be denoted by ¥. Then
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¢' &' A*

%

A = A%z p*

p* (2 A*P* + P* A*Z) +q

With the exception of @#(t), we see that this set of equations 1is the same as
that given by (5.7-5.9). However, here the problem is not singular. The
solution can be obtained easily by integrating the edjoint equations backwards
with an estimated value of A¥(T). The off diagonal elements of .A¥(T) and zero
and the diagonal elements of A*(T) are to be adjusted so that the prescribed
values of Pii(T) are gatisfled. To obtain the solution corresponding to the
case that p23 (T) = 0, we let Azg (T) = ® . The results are also plotted in
Figures 5.2-5.4. The numerical values indicate that the difference between
this solution and the optimal solution developed in this paper in the total

velocity requirement 1s about ten percent.

MEl: This is the problem of minimizing the effort when only pll(T) is speci-
fied. Tt corresponds to the case of letting 7\12(0) = 7&22(0) = 0. In other
words, we control the position to the specified rms value and turn off the
control until T. An impulse is then added to bring p22(T) down to zero. In
Figure 5.2 we plot the results of m versus the total effort with
or without the final impulse. The amount of the additional velocity correc-
tlon due to the impulse is, of course, A[SEETEY . Similar plots are given
in Figures 5.3 and 5.4. As expected, for the seme terminal rms values, this
design requires a little more effort than that obtained by controlling both

components starting at t = O.

B. Controlling the Two Positions of Two One-Dimensional Models

This example considers the terminal phase of an interplanetery trip
where both the in-plane and out-of-plane terminal position components are to

be independently controlled. The perturbed motions are assumed to be decoupled
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and that each one moves in a uniform motion. We shall use the same information
rate matrix as that used 1n the previous example and it will be further assumed
that the information rate with respect to the two positions are independent.

The differential equations governing the adjoint variables are:

A (8) = ()7 A7 (8) dea) (5.53)

Ao (8) = (1-8)% 2.2 () B(x) (5.5%)
and

Ao(t) = py(8) = 0 (5.55)

Equations (5.53-5.54) do not imply that the equations are decoupled. The
coupling is introduced by the function @(t). By letting k22(0) = 1, a family
of solutions can be obtained for different velues of xll(o). A typical one
corresponding to xll(o) = 1.01 is given in Figure 5.5. It shows the plot of
the history of A/:;;;ny s 4/7%;;(5; and the effort versus the time to go.
It is seen that the solution consists of an initial period of no control,
followed by a perlod of continuous control and finally a period of no control
at the end. The last statement 1s true since the control may be turned off

when sufficient terminal accuracies have been obtained.

Case Involving a Cap in Information Rate

We know that in the event ¢(t) < 0, there will exist intervals within
(ton ’ toff) such that the control 1s turned off. This occurs, for instance,
when the information rate suddenly increases. A computation procedure was
described in the previous section by which the intervals of no control can
be found. For purposes of 1llustration, we assume that the information
vanishes over the interval‘(t1 , t2) and suddenly increases at t2. In particu-

lar, we choose tl = 0.27T and t, = O.45T.

2
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Now the elements of Q(ql1 and q22) are equal and have the general

shape

q,,(t)

It is clear that the control cannot follow the sharp rise of Q4 at t2; i.e.,
¢(t2) < 0. Therefore, the control must be turned off before or immediately
after tl. Since Q is discontinuous at tl ; 1t follows from the reasoning given
in the previous section that an impulse may be applied at tl. This is indeed
the case. The amount of the impulse (which is not a full correction) is deter-

mined by the condition that the adjoint variables after the correctlon must

be the same as the time when the control is turned on agaln. The amount of
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the drop or jump in P or A can be determined by integrating with respect

to the effort at tl using (5.23-5.24) which in our case can be written as

dp, 4 2
= = -2t A,y Py, (5.56)
ar
2
aii = (1-%,) 1112 ;i i=1,02 (5.57)

Iet the superscripts - and + denote the times immediately before and after

the impulse, respectively. Direct integration of (5.57) yields

effort due to the impulse = (T-il)z (: Aii - ki; :) (5.58)
Dividing (5.56-5.57) shows
dpy; dry
2—1’;; o )‘ii
which can be 1lntegrated to give
oy, M5 = oy 0D (5.59)

Equation (5.59) shows, as expected, that (5.13) is satisfied during the
impulse.
Prior to tl, the computation remains the same as before. At tl, we

A
proceed as follows: Iet d = Tll

22

+ )\+

1. Assume an effort due to the impulse and compute *11 » Ao

and d from (5.58).
+ +
2. Use (5.59) to determine p); end p,3 .
3. Integrate the equations for p,, with § = O until (5.15) is
satisfied. This determines ti. Use is then made of (5.13)

to determine Aii and 4 at ti .
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L, If d(t{) # d(ti), we repeat the procedure again by assuming
a different effort.
The results for the case 111(0) = 1.01 are shown in Figure 5.6. The
discontlinuities at tl correspond to the impulsive correction. It is seen

t

that tl is greater than t2 which agrees with the intuitive reasoning thet
it 1s necessary to let the information catch up after an interval of no obser-
vation.

It is of interest to note that the quadratic loss solution corres-
ponding to this particular example is completely decoupled. In other words,
specification of the variance of the terminal in-plane position does not

effect the solution of the out-of-plane component and vice versa. The

coupling, in our case, is Introduced by the loss function.
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2.6 Solution by Green's Theorem (Review)

This section outlines an alternate method (the one used by Breakwell
and Striebel) for solving the optimization problem of controlling only one
terminal component. Without loss of generality, it will again be assumed
that the particular terminal miss we wish to control is the uncertainty in
the position xl.* The method 1s based on an ingenious application of Green's
Theorem.

From Eq. (4.4), we find

dpy;.

=% - 2H¥GSPp;ta; 0 ppy(0)=0 (6.1)

where H is a row vector consisting of all zero elements except hl = 1. ILet

the quantity to be minimized be given by

T
J NE'®) s(t) ¢ [p(t) (6.2)

The problem is to find the elements of the mxl feedback gain matrix S{t)
which minimizes (6.2) subject to the differential constraint (6.1) and a pres-
cribed pll(T)'

Now, for a prescribed instantaneous pll(t) and S'(t) S(t), the negative
term in (6.1) is most negative if we choose the m-vector S(t) parallel to the
m-vector H$G. In other words, we apply the control in the direction of maxi-

mum effectiveness. ILet

sp) = &) G @ H (6.3)

*The work in Sections 2.7-2.9 are all concerned with the problem of controlling
only one terminal component.
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where

D(t) = / H8GG & H' (6.4)
is the maximum velocity effectiveness and g(t) = 0% ie & scalar gain to

be determined. Substituting (6.3) into (6.1)-(6.2), we find

ap
=& = -2(t) &(t) pyy(8) + qp(t) (6.5)

while the integrated total effort becomes

T
J g(t) [p (v)  at (6.6)
o

The problem now becomes that of finding & scalar gein g(t) = O which mini-

mizes (6.6) subject to the differential constraint (6.5) with specified pll(T).
The problem stated in the previous paragraph is equivalent, by elimi-

nation of g(t) between (6.5) and (6.6), to the minimization of the following

time integral in the t-p plane

(T, Py1(T))

9, () 4t - dp,y

e(e) = (6.7)
2p(t) ’ P
(0,0)
where at each point of the curve C joining (0,0) to (7T, pll(T))
dp
~e0 5 =g < qpy (%) - (6.8)

Now the difference in cost e(cl) and e(c2) associated with two different
strategies gl(t) and gz(t) leading to the specified pll(T) can be expressed

as a line integral around a closed curve in the t-p11 plane which, according

*We assume all(T) < all(O) s0 that a negative g(t) will not be helpful.
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to Green's Theorem, is

1y, (8) at - dp,y

2p(t) A[BII

e(e,)-e(c,) (6.9)

€10

- q
= [ _3% an(t)l >' 3211 < 1L (t) ) ]dt dp,,

A 20 an(t), /3,
12
where E#) denotes the line integral around the closed curve obtained
c

by following @, forward from (0,0) to (T, pll(T)) and then C, back to (0.0).
The area A12 1s counted as positive if enclosed in a counter-clockwise direc-

tion. Evaluating the integral in the double integral in (6.9), we obtain

2 p,, D(t) + qj; D(t)
bp 32 (1)

e(cl)-e(ca) = dtdp, (6.10)

A2

Assuming that, typically, D(t) is a decreasing function of t, the integral
in (6.10) 1s positive or negative as the point in question lies below or

ebove & critical curve C* given by

a;,(t) p(t)

Py, () = p " (t) = PP

(6.11)

which separates (0,0) from (T, pll(T)), since D(T) = O and qll(O) p(0) > o.

Thus, a possible curve from (0,0) to (T, (T)) must cross the critical curve

P11
C* an odd number of times. Figure 6.1 1llustrates the situation when this

number is 3.
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v

Figure 6.1 Possible P1p Histories

Iet the crossing points be Al, A2, sesesssss Furthermore, let A be
a point on C* obtained by proceeding from (0.0) along & curve Cl* with a maxi-
mum slope qll(t) permitted by (6.8) until the critical curve is reached and
let B be obtained similarly by proceeding backwards from (T, pll(T)) along a
curve Cz* with slope qll(t) until C' 1s reached. Then (6.10), together with
the plus sign of the integral below C* shows that the contribution to C from
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that part of the curve C between (0,0) and A is greater than that obtained

*
1

contribution of the arc A2A3 of C 18 greater than that of the corresponding

by following C, from {0,0) to A and then ¢* from A to Al. Likewise, the

arc of C . Similarly, because of the minus sign of the integral of (6.10)
above C*, the contribution to C of the arc A2A3 of C is greater than that of
the corresponding arc of C*, and the contribution to e of the arc of C between
A, and (T, pll(T)) is greater than that obtained by following ¢® from A3 to B

3

and then 02* from B to (T, Pll(T))'

Putting all this together, we have proved that the optimum curve C is

made up of cl* , ¢*, 02* , so that the optimum g(t) is O until the time t,
*
at which Cl* meets C* and is again O after the time t2 at which C meets 02*.

Between t, and t, the optimum g(t) is such as to yield (6.11).

2 2

In summary, then, the optimal strategy, in general, consists of a period

of no control while pll(t) rise from O to the critical curve. This is followed

by a period of continuous (non-impulsive) control as long as g,;(t) is contin-

uous, and provided that pll*(tzrdoes not exceed_gllﬁt),and finally followed by

a period of no control just before arriving near the planet.

As we have mentloned already, the above solution is not applicable if
the critical curve C* has anywhere e positive slope grecater than the maxirum
allowable qll(t). Such 1s the case, for example, when & sharp increasc in
information rate is encountered. Suppose, for example, that there 1s a sharp
rise in the information rate at some time t . This implies that pll*(t) also
has a sharp rise at tc. In this case, the optimum allowable C must leave C*
at some time prior to tc, proceed at the maximum allowable slope qll(t), and
rejoin C* at some time later than tc 5, in such a way as to minimize the sum of

the double integrals evaluated over the two shaded areas indicated in Figure 6.2.
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Figure 6.2 Optimum pll History with Jump In Information Rate

This situation also arises if there is a finite interval of time, say

tB to tc , over which the information rate vanishes. In this case pll*(t)



*
vanishes between t‘B and t. ¢ 80 that the curve C drops down to the t-axis

between tB and t, and rises sharply again at tc. Again an allowable C

(o]
cannot follow the sharp rise. The optimum C must, therefore, follow the sharp
drop at t, only part of the way down to p,, = O, proceed at slope qn(t),
which 1is O between t’B and tc , and rejoin C* at some time later than t o’ in
such a way as to minimize the sum of the contributions of the two shadecd areas
in Figure 6.3 The drop part way toward Pll = 0 at tB corresponds, of course,

to an impulsive correction less than the full correction indicated by the

estimated migs Just prior to tB'

11

' (1,p, ()

C*

v

R R

N
Frwamrmmom ==

Q
n

Figure 6.3 Optimum p,, History with Break in Information Rate
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The search for the optimum transitions in Figures 6.2 and 6.3 is not
tedious. It was shown in the previous section (Section 5.2) that optimum
transitions correspond to double points in the 311 - D AJBI; plane where,

to recapitulate,

e (t) =p;,(8) + Bave' g (6.12)

which is the mean square value of the actual terminal miss when the control
is turned off at t.

It should be noted that pll(t) and all(t) are mean-squared quentities
whose optimum historiles correspond to an optimal choice of g(t). A typical
history of the random process | Qi(T, t) ] 1s not necessarily monotonic
prior to control turn-on and the value at turn-on is not necessarily at some

pre-assigned critical level. Neither is its final value specified.



2.7 Simultaneous Optimization of Control, Measurement Rate and the Type
of Measurements

The average total veloclty correction computed in the previous sections
depends partly on launching accuracy and partly on the information rate
history. The latter 1is especially true near arrival at a planet. Now,
vhether onboard measurements of the planet against a star background are
made photographically by astronauts or by powered star and planet trackers,
there are good reasons for reducing the total number of measurements to a
number very much smaller than the number possible by measuring throughout
at a maximum rate even though the average total veloclty correction would
thereby be somewhat increased. We are led, thus, to formulate the following
problem: Optimize the variable observation rate as well as the correction
schedule so as to achieve & desired terminal accuracy with a minimum value of
a specified linear combination of total number of observations and average total
velocity correction. Again, we will be only concerned with the case of p = 1
and. controlling the terminal position Xy

The results of thils Investigation of simultaneous optimization of con-
trol and mecasurement rate seem to indicate that, in general, the optimal
policy consists of periods of measuring scparated by periods without measurc-
ment or corrective action. FEach measurement period starts at a maximum rate
with a sub-period without correction action. This is followed by a sub-period
of gradual (continuous) correction, and ends with an impulsive.partial correc-
tion of the miss. The measuring prior to the impulse may be either at maxi-
mum rate or at a lower critical rate. If, in addition, & choice 1s available
at any time between various measurements, the optimization procedure automati-
cally selects a most advantageous measurement.

For mathematical simplicity, we shall confine our attention in Sections
2.7.1-2.7.4 to an essentially one-dimensional control problem the same as

the example considered in Seetion 2.5. Sectlion 2.7.5 shows how the solution
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can be extended to the two-dimensional case including, in addition, a choice

between several kinds of observations.

2.7.1 Formulation of the One-Dimensional Model

Consider the one-dimensional problem analogous to the approach to a
planet where the only available observation is the vehicle-planet direction
(described in Section 2.5.3). The velocity effectiveness of this straight
line model is simply the time to go; 1i.e., D(t) = T-t, which will be denoted
by 7.

Let r{t) be the varisble measurement rate, O < r(t) < R ; R being the
maximum observation rate. The spectrum of the additive measurement noise

can be written as

(&) (7.1)
let pll(t) and wll(t) be the variances of the predicted miss-distance
Ql(T,t) and its error xl(T,t) - Ql(T,t), respectively, and let all(t) be
the variance of the actual miss. Then

ajp(t) = py () + w (%)
N
since the error in Q&(T,t) is known to be independent of xl(T,t). It can

be readily shown, using the results of the previous sections, that

p,(8) = -2vg(t) pyy(t) + r(t) Bt) w,(t) (7.2)

a;1(t) = -2%g(t) py,(t) (7-3)
and

Wi (8) = -r(t) n(e) v, (s) (7.4)

where h{t) is a measure of the geometrical effectiveness of the measurements
and increagses markedly as t —~ T in our case of angular measurements of the

target's instantaneous direction
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B(t) = —y—m—p (7.5)

Note pll(O) = 0, while all(o) = wll(o) = 7 cov (x2(0)). Now the total number

of observations may be represented by

T
X r(t) at (7.6)

o

while the average total velocity correction is

T
j g(t) { P;1(t) dt (7.7)

Iet the cost be given by

T T
cost = I 2 g(t) | pllltj dt + k J r(t) at (7.8)

(o] (o]

where k is a specified constant. The problem to be solved in this section

can be stated as follows. Determine the control varisbles r(t) and g(t),

subject to the lnequalities

0 < r(t) <R (the maximum observation rate) (7.9)

0 < g(t) s © (7.10)

which minimize the cost (7.8) for a given sum allig) of the final values

of the "states" p,, and w,, where known initial values are O and ™ cov (x,(0))

and which satisfy the differential constraints (7.2) and (7.4) where h(t)

is a known function. We assume that all(T) < all(O) so that a negative g(t)

would not be helpful.

Note that this is a doubly singular problem in that both control

variables occur only linearly in the appropriate Hamiltonian. A computation
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procedure for solving this problem is given in the next two sections.

2.7.2 Necessary Conditlons for Optimality

To investigate the computation of the solution, we first derive the
necessary conditions under which the optimal solution must satisfy. Iet
Xll(t) and all(t) be the adjoint variables corresponding to pll(t) and wll(t),

respectively. The Hamiltonian to be minimized is thus

2 2
H )‘1]_(rhw:Ll -2Tgpll)-cxllrhwll +2gJ’pE‘1+~kr

i}

2
2g [Py (- APy ) + v (k- (ay - Ay ) hwyy)

(7.11)
The rates of change of the adjoint variables are:
ill = - gH = 2X) 7T 8 - T (7.12)
P11 4211
¥y = = = 2 (@, - A )T hw (7.13)
11 awll 11 11 11 ¢

The terminal constraint on p,, + w,, requires that A,, and «o,, satisfy the
11 7 Y11 T 11 11

end constraint

A (T = g (T) (7.14)
Note that in this doubly singular problem -;—}é and %I—I{_ are independent
of g and r. The minimization of thils Hamiltonian with respect to the controls

¢ and r is simple provided that -gg- >0 and —gl—; 7( 0. It turns out that %I—;

is never negative (i.e., ﬂ‘ll‘, P11 < 1 as proven in Section 2.5.1). The

procedure when either % or -g—g vanishes is less direct. The state and con-

trol history throughout an interval of time during which elther one vanishes

is called a "singular arc,"

(D-S-arc). Thus, the minimization of H with respect to g shows that

AMaix [P = 1 (7.15)

or in case they both vanish, a "doubly singular arc"



during any control period (g(t) > O) and it can be shown that an impulsive
correction preserves the product Kl Pll » the instantancous drop in pll
being matched by a rise in kll' Differentiation of (7.15) with respect to t,
together with (7.2), (7.12) and (7.15) yields the equation for the critical

*
P described in the previous section, namely

p(t) = p(t) = trhnw (7.16)

The minimization of H with respect to r shows that

o= (7.17)
0 if >0

A}

where the “switching function" F is given by

how, 2 (7.18)

F=k - (all - A 11

11)
To proceced along an arc on vhich F = 0, we need an equation for computing
r in terms of r, the adjoint variables and the states. This is obtained as
follows. From (7.4), (7.12) and (7.14), we find

d 2 T - g 2
& [(Q’ll - Ag) vyg _] =T Yy (7-19)

which shows that

ar _ hg 2 2 dh

T S o= v - (oM F{ (7.20)
Jpll

Tt follows easily from (7.18) and (7.20) that F cannot remain zero if g = O.
Thus, any interval during which F remains zero constitutes a D-§ arc.

On the other hand, substituting (7.16) into {7.2) gives

2

d 2 2
— (rh Wi ) = -grh Wiq 1? +rhow (7.21)

dt

VP

which provides an expression for g(t) in terms of Wip 0 T and r. Eliminating

g(t), we find
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2
ar 1 h V11 . 1 d 2
= - —— - — — w
( rY. 2¢ dt (b ¥11 )

at
vP11*
h "'112 2 dh
+ 3/2 —1—2— - (au - )‘11) L i (7.22)

Since dF/dt must be identically zero along the D-S arc, we find, after setting
the right-hand side of (7.22) to zero, a relation for r in terms of r, the
states p and w

12 and the adjoint variables o 1 and xll' This allows us to

1 1

compute the intermediate r-history.

We observe that an impulsive drop in pll’ and consequently an impulsive
rise in xll and F, can only occur at the end of a period of observation, i.e.,
at time when F = O preccded by times when F < O. This 1Is cequivalent to allow-
ing only those discontinuities in pll and xll which preserve the continuity
not only of hlr/ﬁzz but also of the Hamiltonian. In particular, we cannot
Jump onto a D-S arc where F has to remain zero.

Furthermore, the control gain g(t) is always zero at the beginning of
any observation period. In particular, we cannot start on & D-3 arc at the
veginning of an observation period since the simultaneous vanishing to (7.18)
and (7.20) is consistent with an increasing h(t).

There remains the possibility of starting on a D-S arc at a time tl
when F(tl) = O preceded by times when F < 0. If however, ﬁ(ti) > 0, starting
at tl on a D-S arc would require a negative jump in ?(t). But according to
(7.22), F(4) is a decreasing function of I so that a negative jump in F requires
& positive jump in r from the value i(ti) = 0 (since F <0 = r = R). t this
positive jump in r is not consistent with r < R. Tinally, then, we conclude

that we can only start on a D-S arc at time t, such that F(ti) = 0 and

1
?(ti) = 0, preceded by times F <-0.

The next section outlines a computation procedure for obtaining the



optimal r and g histories. It turns out that the optimal policy, in general,

consists of periods of measuring separated by periods without measurement

or corrective actlion. Each measurement period starts at maximum rate r(t) = R,

with a subperiod without corrective action g(t) = 0. This is followed by a

subperiod of gradual (continuous) correction and ends with an impulsive par-

tial correction of the miss. The measuring prior to the impulse may be either

at maximum rate or at & lower rate. The latter case constitutes a "doubly

singular" segment of the control history.

2.7.3 Computation Procedure

From the equations derived in Section 2.7.2, we see that (1) if r = O

A

then g = 0, while and w,, remain constant; (2) F(0) > 0. It

117 M1 Pnn
follows that r = 0 initially. The computation proceeds as follows:

1. Guess an initial positive value for (all - kll).

2. Keep r = O and v, constant until %, when F(tl) = 0; t, is specified

by the equation

n(t,) = X (7.23)
' {“11(0) - "11(0)} wy,°(0)

R, g(t) = O and compute wll(t) and pll(t) = all(O) - wll(t)

3. Keepr

2
until time t, when pll(t) reaches the critical curve pll*(tz) =1 T, Rh(te)w11 (te).

Computation of wll(t) is done here analytically by using the explicit solution

(see Eq. 5.47)
) = ) ¢ { (t, - ;) +2miog (T )
Vf Os 12 \
P ?
+ - (7.24)
T-%, T-t,
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4. Compute lll(ta),

1

—_—— (7.25)
T /p11*(tp)

Malt) =

and all(ta), which can be obtained by the equation

\""11“2) - "11(*‘2)} Wyt (ty) = {"’11(0) - A11(°)X wy,%(0)

(7.26)
since g(t) = 0 for te (O,tz).
5. Keep pll(t) =p*(t) = Rq;hwl?i. Compute xll(t) by
1
A (8) = ———— (7.27)
¥ “Pll*(t>

wll(t) by (7.24) and numerically integrate all(t) until t3 where F(t3) = O.

If F(t) remains negative for all t ¢ (te, T), the computation is repeated

agein from procedure 1 with a different initial guess for (all(o) - xll(o)).
6. Consider t3 as a time of final observation cutoff by applying an

impulse whose magnitude 1s such that
+y -
where t; is the instant immediately after the impulse. Note that xll(T) =
+
all(T) since r = g = 0 for t 2 t3, and A,,/P;; remains unchanged during the

impulse. The negative jump in pll(t3) is determined by the relation

Y AED = + ,——a(fq
and the additional average velocity correction due to this impulse is given

by
1
T (ney - v'pu(t;)) (7.30)

7. Consider t, as a possible time of temporary but not final observa-

3
tion cutoff. Apply & negative Jump in Pyys whose amount is to be determined by
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iteration, along with a positive jump in Xll determined by (7.29). As a

result the switching function at t; again becomes positive,

B = 26 ¢ Jogyte) - A9 nee) v P >0 (13

Run through procedures 2, 3 and 4 to obtain t), and t. where t) 1is the time

5
vhen F reaches zero and ts is the time when pll(t) again reaches the critical

curve, l.e.,

t
5

Pll(t3) + Jt Rhw112 at (7.32)
L

Now determine Xll(ts). Since g(t) = 0 for te(t3 , t5)’ it follows from (7.12)
that All must remain constant during this interval. An iterative search is
therefore used here to dctermine the size of the impulse &t t3 such that
xll(tg) = xll(ts). If the search is successful, the computation then follows
procedure 5 until time t6 when F again reaches zero. We are now in the same
situation as the beginning of procedure 6. The same step is therefore repeated
i.e., an impulse is applied whose amount 1s to be determined by an iterative
loop, ete., until t recaches T. Note that each of the times t3, t6’ ... MBY
be considered as the time of final observation cutoff with mean square terminal
miss all(tg), all(tg), .... This computation gives a finite number of terminal
variances a(T) for every guess of the single quantity (all(o) - All(o)). The
solution in this case has a form where r(t) is either at its maximum or zero,
i.e., the observation rate is bang-bang.

8. 1If the above iterative search is not successful, we look for the
possibility of a D-S arc. If in step 5, ts is such that F(tg) >0, tg cannot
be the beginning of a D-S arc. This then completes the computation cycle for

the particular initial guess of (all(o) - 111(0)).
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9. If ﬁ(tg) = 0, t, 1s teken as the beginning of a D-S arc. Note

3
that only a particular value of (all(O) - 111(0)) will lead to this condition.

To proceed, we compute ©(t) from (7.22) by setting F(t) = 0, use (7.16) to

compute pll(t), (7.15) to compute Xll(t) and numerically integrate ., and w

11
This computation continues until time tm when r again reaches its maximum

11°

value (R). Now every point te(t3, tm) is a possible time of final observation
cutoff by simply applying an impulse which makes All(t+) = all(t), te(t3, tm).
Moreover, every point te(t3, tm) is also a possible time of temporary observa-
tion cutoff; in which case, the computation proceeds through an iterative loop
described in procedure 7, and if successful, continues on to a time t6* (t6

in Figure 7.1) when F again reaches zero. Note that t6* is again a possible
time of final or temporary observation cutoff and, if ?(t6*) = 0, t6* is also
a possible starting point for a second D-S arc and we may then proceed along
this second D-S arc and repeat the procedure again. Typical F(t), r(t) and
(t) histories are shown in Figure 7.1 with two observation periods, each

P11
one ending with a D-S arc.

2.7.4 Results of Numerical Work

For purposes of illustration, we present in this section some of the
numerical results we have obtalned in applying the computation procedure
outlined in the previous section. The following parameters are used defining
this approach guidance: T = 106 sec (~10 days), Ve=3 km/sec, g, = 1 milli-
red, R = 270 x 106 (sec-l) (spproximately once/hour). The initial uncertainty
is taken to be wll(o) = 3000 km (corresponding to initial velocity uncertainty
of 3m/sec). We suppose that k = 0.09.

For various velues of the initial guess paremeter (all(o) - All(o)), a
finite number of rms terminal misses A[Z;;?Ea was obtalned together with

the associated costs. For an exceptional value of (011(0) - xll(o)), we were
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Fig.7.1 Typicel F,r and p Histories.

2-60



led to a second guess parameter, namely, the time of leaving the Tirst D-S

arc. For an exceptional value of the second guess perameter, we were led to

a third guess parameter, the time of leaving the second D-S arc. TFour different
types of observation rate histories were obtained, and these are shown in
Figures T.2-7.5 together with the corresponding projected miss histories.

Here, all(T) and a normalized measuring rate r(t)/R are plotted versus the
normalized time t/T. All together, in this way, the minimum cost for any
terminal miss was obtained and is shown in Figure 7.6.

Flgure 7.2 shows Case 1 where there is only one period of measurement
at the maximum rate. In addition to the projected rms miss, we have also
Included in the same figure the rms predicted miss \[;E;};;. It is seen
that the control is turned on after having measured at a maximum rate for
some time and the control always ends with an impulse at the time of final
observation cutoff. This 1s reflected by a downward Jump in the rms miss
and the predicted miss at that time. Note that wll(t) = all(t) - pll(t)
remains unchanged during the impulse. Case 1 applies to rms misses from 3000
km down to approximately 750 km and is obtalned by varylng the initial guess
of (all(o) - xll(o)) from nearly zero up to & critical value where cases 2, 3
and 4 start.

Figure T.3 shows the typical solution for Case 2 where there 1s one
period of measurement ending with a subperiod of observation at less than maxi-
mum rate. The latter corresponds to the D-S arc. Note that each point on the
D-S arc 1s a possible time of final observation cutoff. A typical one is
shown by the dotted line. Case 2 applies to rms misses from approximately
750 km down to 200 km.

By taking each point on the D-S arc as a point of temporary observation

cutoff, we obtain type 3 which is plotted in Figure 7.4 Tt consists of two
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periods of observation where the second period 1s always at maximum rate.
There are two impulsive controls in thils case; the first one is applied on
leaving the D-S arc and the second one is applied at the end of the second
interval of observation. Case 3 applies to rms misses from 200 km to 140 km
and also from 45 km down to zemw.

The gap between 45 km to 140 km is filled up by Case 4, ghown in
Figure 7.5, involving two Intervals of observation, each one ending with a
D-S arc. Any point on the second D-S arc 1s a possible time of final observa-
tion cutoff as shown by the dotted line.

In Figure 7.6, where we show the plot of rms terminal miss versus cost,
we have indicated the range of rms miss corresponding to the verious cases.
Note that in this example, no matter what the desired terminal accuracy is,
not more than two observation periods are required. 7In a modified example,
vhere the cost of observation k was somewhat lower, we required only one
relatively long observation period. We may expect that much higher costs of
observation will require several observation periods in order to achieve a
reasonebly low terminal miss. FEach observation period, of course, terminates
wilth an impulsive correction. It is interesting to compare this correction

strategy with the purely discrete strategy in References (1), (2) and (3).

2.7.5 A Two-Dimensional Extension of the Problem

The result derived in the previous section is now extended, at least
in principle, to a planar transfer problem. A description of such a planar
transfer problem is given in Section 2.1. 1In this case, the variance of the
error in the predicted miss, x; (T, t) 'ﬂ;l (T, t), 1s now the 1-1 element
of a 2x2 position-prediction error coveriance matrix E(t), which satisfies

the matrix Riccati equation:

B(t) = -r(t) E(t) N(t) E(t) (7.33)
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where N(t) is a positive semi-definite matrix measuring measurement effective-
ness relative to both terminal position components. The variance all(t) of

x, (T, t) satisfies in place of (7.5),

a15(¢) = -2 D(t) g(t) py, (%) (7-34)

where D(t) is the maximum effectiveness of the velocity correction on the

predicted miss. Hence, in place of (7.2), we have

Biy(8) = - 2n(t) g(t) By, (8) + v(e) tr [["E() N(s) E(e) | (7.35)

where " 1s a 2x2 matrix given by

1 o

r - (7. 36)

0 0]

Note that tr { Me(t) N(t) E(t)} essentially picks out the 1-1 element of
the 2x2 matrix E(t) N(t) E(t)
In place of the scalar adjoint all(t), we must now introduce s 2x2

symmetric matrix M(t) and minimize a Hamiltonlan:
B o= 2g(t) (P00 + ke(8) 4 Apy(6) By (8)

e ) h(t)ﬁ (7.37)

Since the terminal constraint is only on &,,(T) = p {(T) + wy,(T), A, (%)

and M(t) must satisfy the end constreints,

M = m (D) 5 m(T) = my,(T) = O (7.38)
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Instead of guessing a single initial quantity ‘111(0) - all(ois'we now have
%o puess three initial quantities: {111(0) - mll(O)} s m12(0), m22(0), and
strive to meet the three end conditions (7.38). Note that F(t) = 0 preceded
by times when F < 0 yields a possible final cutoff time only if 22PN and m22
also vanish at that time. We may expect in this way to arrive eventually a
one-parameter family of solutions corresponding to various all(T).

This two-dimenslonal problem can have an interesting feature which is
missing from the one-dimensional problem. Suppose that we not only wish to
economize on total fuel and total nuwrber of observations but that we have, in
addition, a choice betwecn several kinds of observations. For example, we
may have onboard capability for measuring angle, range and range-rate from
either Farth or the destination planet. In economizing on an appropriately
weighted total number of observations we would like to know what proportions
of the observations at any time should be allotted to the various kinds. We
shall suppose that there is at any time a maximum (appropriately weighted)

total measurement rate. Formally, then, we seeck to minimize

2g(t) [B () +x > r(8) | &t (7.39)
3

T

where

B) = -2 () B Ny 5, 7 (8) 2 0 (7.50)

J

and where the (normalized) total rate does not exceed unity:

Z_ r) =2 (7.42)
3

The Hamiltonian mey now be written as

H = 2g(t) 4 P13(t) - 2 Ajp(t) a(t) D(t) pyy(t) + Zr'j (t) FJ(t)
J (7.143)
o6l



F, (t) =k - +tr (M(t) - AT ) E(t) ¥, (t) E(%) (7.44)

The minimization of H with respect to the r,'s subject to (7.41) and (7.42)

J
leads immediately to:

all rJ = 0 at any time when all Ii“1 >0

1f, at some time, Min (FJ) < 0, then r * = 1 for the 3* which
J

J
minimizes FH and other rJ = 0
The times at which more than one value of J minimizes FJ are assumed here to
be only momentary. If Mjn (FJ) = 0, we have the possibility of D-S arc as
before.
The reason that this choice 1s trivial in a one-dimensional problem is
that M;n (FJ) < 0 reduces to (all - kll) w112 M§x (BJ) >k (> 0) so that we

always minimize a, itself (after the r,'s have been normalized). This tells

J J
us, for example, when to switch from angular measurement of the vehicle-Earth
direction to angular measurement of the vehicle-planet direction. In two
dimensions, however, because of the general dynamic coupling between terminal
position determination improvement in the x and y directions, it is no longer
clear at any time which kind of information is going to be most effective in
the long run. The rule for selecting J*, nevertheless, is easily included

in the two-dimensional computation scheme for an optimal policy.
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2.8 Optimum Discrete Linear Control Strategy Including Engiﬁe Mechanization
Errors

Minimum effort theory as developed by Breakwell and Striebel5 shows
that the optimum linear strategy 1s continuous. However, practical implemen-
tation often fequires that corrections be carried out at discrete times. A
discrete strategy corresponds to the case in which trajectory corrections
are executed by discrete impulsive veloeclty corrections (i.e., the control
acceleration u(t) is replaced by several impulses).

This section lnvestigates the solution of the optimum discrete strategy
for controlling only one terminal miss (xl) again assuming linear control. In
other words, we assume that the discrete corrective velocity increments are
proportional to the instantaneous predicted miss distance. The mathematical
problem is essentially that of finding the areas as well as the spacings of
these multiple corrections which will steer the vehicle to meet the desired
accuracy with a minimum expected amount of total velocity correction.

The results of this investigation seem to indicate that:

o three to four corrections are very close to optimum and that
elmost no advantages can be obtained by incorporating addi-
tional corrections, and

o the optimum corrective strategy is discrete when engine mechani-
zation errors are included and that there is an optimum number
of corrections for a given size of engine mechanization error.

The presentation of the material in this section is divided into three
parts. Section 2.8.1 outlines a mathematical statement of the discrete
optimization problem. Section 2.8.2 shows how the optimum solution (the
timings and the amount of each corrective thrust) can be obtained. The
technique 1s based on Dynamic Programming leading to an optimum solution
consisting in part analytical and in part computational. Section 2.8.3
gives the results of some numerical work applying the method developed in

this study to a simple one-dimensional model.
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2.8.1 Formulation of the Discrete Optimization Problem

Let 1, t2, see tN be the times by which the corrections are

applied. Then the linear feedback gain g(t) can be written as

N

B) = > k(t,) 3t-t,) (8.1)
11
where
0 < k(t,) < BT%IT (8.2)

The required velocity correction at t, is given by

i

k(t,) & (T, ) (8.3)

where‘Ql(T, ti) is the predicted miss distance immediately before the
correction. Note that equality in (8.2) implies & "full correction" nullify-

ing the predicted miss at t The determination of a N-impulse minimum effort

e
strategy requires the optimization of k(ti) as well es ti’ the timings of these
corrections.*

let pll(ti) and pll(tI) be the mesn square values of the terminal miss
distance immediately before and after the correction. Substituting (8.1)

into (6.5) and (6.6) shows

2
Py, (t]) = (1 - k(%) p(t,)) py,(¢]) (8.4)
P11 (t74) = Py (E]) +b(ty) (8.5)
where t;+1
b(ti) = J q,, 4t (8.6)
%

*For the moment, we will assume negligible engine mechanization error. When
engine execution errors are included, the total number of corrections, N, also
becomes & variable to be optimized.
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while the expected total velocity correction becomes

N

Z k(t,) fpq; (t7) (8.7)

i=1

The problem may now be stated as follows:

Given the system (8.4)-(8.6) with P,,(0) = 0. Find k(ti) 20, t, (1=1,2,...,N)

and N which minimizes (8.7) for a fixed mean squere terminal miss a.l,(T) where

8y, () = B(x,%(T) = pp (8) + wp,(t) (8.8)

ty, being the time of the last correction and w,, (t) is the 1-1 element of

W(t) which satisfies the matrix differential equation (4.5).

This 1s a calculus problem with inequallty constraints. The solution
will be carried out in two steps using Dynamlc Programming. Note that the
inequality constraints pose no computational difficulty and, in fact, help

to eliminate a large number of entries in the tables to be genersated.

2.8.2 Solution

We shall first assume that the correction times have been given and
proceed with the minimization of k(ti) conditional on the given set of timings.
It is then shown how the spacings between these timings can be obtained. It
should be noted that the requirement k(ti) 2 O imposes a constraint on the
permissible spacings of the correction times. However, the times are not
explicitly given. We may, therefore, for the moment assume that all the
k(t i) to be obtained are actually greater than zero. The situation k(ti) <0
can be eliminated easily by inserting a simple logic in the computational

procedure used for optimizing the timings.

yinimi_z_a:tioxl 'of‘G_aiEs Given the Correction Times

This will be done by working backwards using Dynamic Progra.umn:ing.12

For convenience, the constant factor / 2/n will be dropped. ILet
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N

L, = Min ; k(ti) / pu(t;_) (8.9)
-m

k(tJ)
J=m

and meets the specified mean square terminal miss. Application of the

Principle of Optimalitylz yields the recursion equation

L, = Min [ K(t)  [p () ¢ Iy, ] (8.10)

k(t,)
Now
Py ()= (T) = vy (8) = (1 - k(ty) D(tN))z py, (t5)  (8.11)

Since wll(tﬁ) i1s independent of k(tN)*, it follows that specification of

a.ll(T) campletely determines k(tN). In fact,

a, . (T) - w,.,(t})
k(ty) = —D-(};-l;)- (1-/ llpn(tl_')ll LI (8.12)

and

1
Ly = W ’ pll(ti) + +terms which do not involve Pll(tf‘i)'

(8.13)
Substituting (8.13) into (8.10) and using (8.4)-(8.6), we find
= Min k(t ) P, (tz )
Iy-1 (e 1) [ xty 1141
1 2
+ iy o (oKl Dy 07 By (85 0) + ol )
+ terms which do not depend on k(tN_l) J (8.14)

*Mis is true because we have, for the moment, &assumed negliglble engine
mechanization error. '
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Hence, the optimum gain at tN—l is given by

e (tN) b(t

)
N-1
(8.15)
Py (85 1) (0t ;) -D°(8) ) )

k(tN-l) = F(t;:.j (1 -

which, when substituted into (8.1h4) yields

1
= P.,(ts ) + terms which do not depend on
1T W Pl

Pll(tﬁ;l) and hence k(tN;2)
(8.16)
Equation (8.16) is of the same form as (8.13). It follows that
(6. Lo ( 2 () B(%,) ) (8.17)
k(t,) = 1l - 8.17
Y Py, (67) (0°(6,) - D (t,,,) )

1=1,2,...,N-1

We now have the equations for computing the gains es a function of the mean
squere predicted miss. Now pll(o) = 0. Using this, Equations (8.4)-(8.6),

and the expression for the gains, it is seen that

D% (t,,,) b(t,)

D2(ti) - De(t

py,(¢]) = (8.18)

1+1)
and

D?'(ti) b(t,)

Dz(ti) - (t

Py(ty4) = (8.19)

i+l)

Hence, we may express the gains k(tk) as functions of only the given correction

times by substituting (8.18)-(8.19) into (8.17) and (8.12).

The total average cumlative effort for a given set of correction times

is Lo' It can be easily verified and we shall omit the details that
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i=1

} 3(']“;1@' Ja (™) - v () ) (8.20)

The only remaining problem now is to find the optimum settings of the correc-
tion times which minimize L0 such that k(ti) =2 0. Unfortunately, this tedious
problem does not yield readily to analytical solutions. However, it turns

out that the optimum times can be easlly computed by using Dynamic Programming.
Since only the correction times t, (which run over a finite interval) nced to
be quantized and it appears that an adequate solution involves only three to
four corrections, the usual difficulty of the storage problem and the accumu-
lation of quantization errors associated with computation by Dynamic Program-
ming disappears. Furthermore, it will be seen that this method of [inding

the correction times remains essentially unchanged when engine execution error

is included.

Computation Procedure for Optimizing the Correction Times

The algorithm for computatlion involves a procedure based on Dynamic Pro-

gramming.12 Inspection of (8.20) shows that Lb can be written as

Lo = Aty 5 t5) + Ag(ty 5 B3) + oo+ Ay (b s b)) + Ayl 5 2, (T))
(8.21)

where

Aty 5 ) = 5-(%? Joee) m J 07 (6)) - D7(8,)) b(t)
(8.22)

Aty 5 by,) = m J 0F(e,) - 07(6,, 1)) b(t,)  (8.23)

1=2,3,--.,N"l



Aty s 8 (D)) = - 3(%;7 Ja () - v (&) (8.24)

Let

U, (t,,) = Mn (A (ty 5 t5) + .o +A(H , %)) (8.25)
tl"'tk/tkﬂ

It follows fram the principle of optimality that

U (tyy) = Min (A (b 5 tp) + T, (5)) (8.26)
tk /tk+1

The computatlon proceeds forward with

Ul(ta) = Min (Al(tl , t2) ) (8.27)
vy [t

and involves constructing the tebles Ui(ti+1)' It is to be noted that the
total number N need not be fixed in advance and that by the proper selection
of the Ak, the optimum k-impulse strategy can be obtained before proceeding
to the computation of the k+l-impulse correction strategy. A large number of
unnecessary entries in each table can be eliminated by including in the computa-
tion procedure the constraints that t, <t and that each k(ti) must be

i 1+1
positive.

Inclusion of the Mechanization Frror

The analysis so far has assumed that the engine mechanization errors
are negligible, The same anelysis, however, can also be used to include the
effect of these random errors. The mechanizatlon errors to be considered in
this paper are assumed to be of two varieties, both of which are normal, inde-

pendent with zero mean and constant variances.
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e. Englne Bxecution Error. The random engine execution error is

assumed to be in the direction of the correction with a standard deviation cB.
The effect of this error is to increase the variance of the predicted miss.

It should be noted that the errors in the transverse direction effects only
the time of arrival since the orientation of the engine has been optimized

in the direction of maximum sensitivity miss distance.

b. Accelerometer Reading Error. This is the error in the

knowledge of the actual amount of velocity correction used and is assumed
to be additive with a standard deviation O, This random error causes a loss
in information and increases the variances of the estimation errors. It turns
out that this is equivalent to applylng impulses at the correction times to
the right-hand side of Equation (3.3) (or equivalently Eq. (4.5)). The effect
of these lmpulses is to ceuse a jump (or discontinuity) in the elements vij(t)’
1,Ja3,4, immediately after the correction.

It can be shown13 that the uncertainty introduced into the covariance

matrix of the estimation error at the correction times is given by

V(tI) = V() + B(t,) (8.28)

where B(ti) is a bxh matrix consisting of all zero elements except the four

elements in the lower right corner., This submatrix of nonzero elements is

given by
2 £y (T ty)  fig (T %) 6y, (T 4)
1
P(x,) 2 (8-29)
i B13 (T ty) By, (T, %) #o, (T %)
where
g 2 g 2
q o= =% (8.30)
GB + cd
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In addition, (8.6) is replaced by

ti+l
v(ty) = X q; 8 + 0% D7 (t,) (8.31)
tf
vhere L
o2 = i (8.32)
2 o N o 2 *
@ B

The second term in (8.31) shows the effect of the Increase of the variance
of the predicted miss due to the engine execution error.

Now the computation procedure outlined so far leads to an optimum
solution only in the case of ¢ =0 (no accelerometer reading error). In
general, a more elaborate computation will be required by the addition of the
accelerometer reading error. This is because, in this case, (8.21) can no
longer be written as & sum of terms, each one being & function of two variables

only. In other words, each of the A, appearing in (8.21) is now an explicit

1
function of all the correction times before t, as Vv(t) now depends on the
correction times. The method of solution described in this paper clearly
leads to an upper bound solution. However, the numerical results of an
example studied in the next section indicate that this bound 1s quite good
and, in fact, can be used fruitfully as an initial guess for a gradient pro-
cedure if optimum solution i1s desired. In getting this upper bound solution,
the addition of the orbit estimation uncertainty due to the accelerometer
reading error is teken care of by storing the elements of V(t;) along with

table Ui(ti_,_l).

4.8.3 Application to a One-Dimensional Model and Discussion of Results

The same simple one-dimensional model used 1n the previous section
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1s considered here. The parameter values assumed defining this approaching
guidance is given in Table 8.1. The results are given in Figures 8.1-8.3

and Tables 8.2-8.k.

Table 8.1
Symbol Description Values
T Time from start to impact 106 sec~10 deys
ﬁ (o) Stendard deviation of initial
22 s
velocity error 3 m/sec
At Time between measurements 1 hour
T Standard deviation of measurement
error 1 millirad.
Ve Relative velocity between the vehicle
and target planet 3 km/sec
,/all(T) Standard deviation of the desired between 25 km -
terminal miss 2000 km

In Figures 8.1-8.3 the cumulative average velocity corrections are plotted
against the rms terminal miss for various combinations of Oy and UB with up
to five corrections. Figure 8.1 shows the case of no mechanization error.
The result indicates (which seems to be typical in all the other cases) that
three to four corrections are very close to optimum and that very little
advantage can be gained by adding additional corrections. It 1s known that
the optimum solution for this case requires continuous corrections.5 A con-
tlnuous correction strategy based on minimum effort theory developed by
Breakwell and Striebel is actually obtained for thls particular casc. The
results fall very close to that obtained by using five corrections and the
difference seems to arise from the numerical accuracy of the computation (the

grid size used for the Dynamic Programming computation 1s 10h seconds).
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The case g, = 0 and oy = 0.45 m/sec is shown in Figure 8.2. Tt
differs from that given in Figure 8.1 in that there now exists an optimum
number of corrections for a given terminal miss. This can be extracted
from our numerical results by noting that the optimum solution with a given
s terminal miss for N corrections requires more average effort than that
for N-1 corrections. For example, for an rms terminal miss of 500 km, using
four corrections requires less effort than using five corrections. . This is,
of course, intuitively expected since the effect of the englne execution
error 1s to increase the mean square of thc terminal miss at each correction
time. TFigure 8.3 shows the same plot by including, in addition, the
accelerometer readling error. Here we let ca = 0.45 m/sec although realistic
values would be much smaller. The curves represent only the upper bound solu-
tions. The effect of this additional nolse is very small and secms to shift
the solution curves of Figure 8.2 up and to the left. For example, for an
rms miss-dlistance of 500 km, the near-optimum solution given here requires
only three corrections.

Tabulated in Table 8.2 are typical values of the corresponding times
and the corresponding average effort requlrements for an rms distance of
TO km (only the total costs are given for more than four corrections).
Results for three separate cases are presented:

1) o, = o, = 0

o B
2) oy = 0, 0= 0.45 m/s
3) o, = % = 0.45 n/s

This table shows, for example, that a total of five corrections is optimun

for case (3), whereas the optimum solution for case (2) requires eight correc-

tions. Table 8.3 shows the same comparison for an rms miss-distance of 500 km.
In order to get a "feel" of the difference between our upper bound

solution and the optimum solution when the accelerometer reading error is

included, a gradient program based on the method of Newton is built using as
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an initial guess the upper bound solution we have obtained. No provision
is made to taske care of the inequality constraints in this gradient program
since it was anticipated (and verified in this example) that our initial guess
is very close to the optimal solution that inequality constraints will not be
violated.

Consider a change in the loss function (8.20) due to changes in the
correction times ti s, 1=1,2...,N. This change 1s expanded to second order

in Ati so that

sy = (Ze Y 4 %At'(é—%@.} st + 0 (at) (8.33)

where At is & N-vector with elements At . Minimizing (8.33) with respect to

At by ignoring the third order term yields

- GBS (B ©3)

which is then used to obtain the next guess of the correction times. This
procedure has proven to be very effective 1f the initlal guess is very close
to the optimum and if the number of variables to be optimized are few. It
i1s an luwprovement over the standard gradient procedure in that 1t specifies
the size and the direction of the next step during each iteration. It 1is
found that the optimal solution can be obtained in three or four

iterations. Table 8.4 shows a comparison of the upper bound solution and
the true optimum solution for the case of four corrections with an rms ter-
minal miss of 70 km. As expected, the difference is seen to be very small

and is only of the order of 0.3%.
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Table 8.2

NORMALIZED CORRECTION TIMES AND THE CORRESPONDING
AVERAGE EFFORT WITH RMS MISS = TO KM

__ case 1  case 2 Case 3
Number of o =0,=0 o =00, = 045 o =0, = 0.45
Corrections o B o B o B
Correction %m Correction Cost Correction Cost
Time (1008) (2/n)3m/s  Time Time

1 0.94 49.780 0.94 50.070 0.95 59.676
o - Total 49,780 50.070 59.676
2 0.65 8.378 0.66 8.615 0.68 9.196
0.94 5.567 0.94 6.152 0.95 6.921
Total 13.945 14,767 16.117
3 0.51 5.452 0.51 5.418 0.55 6.136
0.80 3.108 0.80 3.281 0.85 3.910
0.94 2.478 0.94 3.158 0.96 3.346
o Total 11.038 11.857 13.292
4 0.4} 4,17 0.45 4.330 0.48 4,855
0.67 2.467 0.70 2.710 0.75 2.892
0.85 1.935 0.87 2.173 0.90 2.406
0.94 1.693 0.95 1.882 0.96 2.398
) ) Total 10.242 11.095 12.551
5 Total 9.91%4 10.761 12.477
6 Total 9.747 10.627 12. 504
7 Total 9.651 10.576 12.617
8 not computed 10.567 not computed
9 not computed 10.581 not computed
10 not computed 10. 604 not computed
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Table 8.3

COMPARISON OF THE TOTAL AVERAGE EFFORT
WITH RMS MISS = 500 KM

: Case 1 Case 2 Case 3
Number of Ty = % = (o] ¢ =0 g = 0.45 o =0, =045
Corrections o o o B

?Zﬁ%%ﬁ?ﬁ? Total Cost Total Cost
1 6.797 7.121 7.291
2 5.845 6.074 6.289
3 5.705 5.961 6.273
b 5.658 5.954 6.354
5 5.637 5.973 6.456
Table 8.4

COMPARISON OF THE NORMALIZED CORRECTION TIMES AND THE
CORRESPONDING EFFORT FOR A NEAR-OPTIMUM SOLUTION AND THE
OPTIMUM SOLUTION WITH (RMS MISS = 70 KM; o, = OB = 0.45 M/SEC)

Near Optimum Solution Optimum Solution
Correction
Correction Cogt Correction
Rumber Time (1098) (2/n)%mLs Time Cost
0.48 L4.855 0.448 4,386
0.75 2.892 0.722 3.016
b 0.90 2.406 0.897 2.711
0.96 2.398 0.96 2.408
Total 12.551 12.521
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2.9 Optimum Nonlinear Control lLaw

All the results we have presented so far assumed that the magnitude of
the control acceleration is proportional to the predicted miss distance .
/;l(T, t). This assumption has allowed us to formilate the guidance problem,
originally stochastic in nature in view of the initial injection error and
random measurement noises, as an equivalent deterministic problem in optimal
control. In this section we shall remove this assumption.
We know that the predicted miss /:;l(T, t) satisfies the scalar differen-
tial equation,
&, (1,%)
—r " fiy (MW up + fy (T, 8) uy 4 (k) (9.1)
where T(t) is a white Gaussian noise with spectrum qn(t). The problem of
nonlinear control to be considered in this section is to find ul(t) and
u2(t) (both of which are assumed to be perfectly executed) as functions of

'il(T, t) which minimizes

T
E J u” +u, dat _ (9.2)

o

for a specified value of

P = E[R2 (1) | (9.3)

The results we have obtained apply only to discrete correction
strategies. However, we may let our discrete solution approach the
solution of the continuous nonlinear correction strategy by inserting more
correction times. The nature of the solution for the discrete model indicates
that a correction control is applied at ti (a given correction time) if, and
only if, the predicted miss distance ’;1(1‘, ti) prior to the correction lies
above (or below) a certain number, say z, (or -zi) , and that the effect of
the control is to bring the predicted miss after the carrection to z; (or -z 1).
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This section i1s divided into three parts. The formulation and the
solution of the problem are given in Section 2.9.1. In Section 2.9.2, we
give the results of some numerical work applying the method to a simple
one-dimensional model. The last section gives a brief description of the
hard constraint problem. Thig is a related but different problem in which
the total effort is strictly limited while minimizing the terminal miss dis-

tance.

2.9.1 Formulation of the Digcrete Model and Solution Formulation

First of all we see that the engine must be pointing in the direction

of maximum effectiveness. This implies that we may write, without loss of

generality,
g.. (7, t)
u (8) = —1%(57—- £(t) (9.4)
g, (T, t)
w(6) = —Ho— £(t) (9-5)

vhere, to recapitulate,

D(t) = 9.2 () + #,2 (7,%)

and £(t) = f(é?l('r,t)) is a function to be determined.

Using (9.4)-(9.5), we see that (9.1) and (9.2) can be replaced by

d’:?l('r,t)
—— = D(t) £(t) + N(¢) (9.6)
and
T
E j | 2(t) | at (9.7
(o}

respectively. let A be a constant Lagrange multiplier.



The problem is then equivalent to finding f£(t) = f(Ql(T,t)) that minimizes
T
Loss = E g | £(t)] at + A2 E (5?2 (T, T)) (9.8)
1 ’ .
o

with no constraints.

We shall provide a discrete computation procedure for finding the
solution of the continuous problem formulated above. ILet us agsume that the
controls are to be executed at a given set of correction times ti, i=1,2,...N

in the form of impulses and let the sizes of the impulsive controls at ti be

denoted by fi so that

£(t)

£, 3(t-t,) (9.9)
=1

A
let Qi and QI be the values of the estimated miss distance xl(T, ti) immediately

before and after the correction and let D, = D(ti). Substituting (9.9) into

(9.6) yields the stochastic difference equation

o= X *t Dbt
and

N _ A.q.

X], =Xt & (9.10)
where e1 are independent normal random verisbles with zero mean and variances

2
oy
o ti+1
0" = b(ti) = qll(t) dt (9.11)
ti

N
Moreover, Q; =0 and X, = Q(T,T). The loss given by (9.8) becomes

N

Loss = E Z l£, ] + (M/2) '?cfm (9.12)

1=1
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The problem, in this discrete formulation, becames that of finding fi as a

function of‘gi vhich minimizes (9.12) subject to the stochastic difference

equation constraint (9.10).

Solution

The solution will be obtained using Dynamic Programming.12 Iet

N
Uy(xj) = Min sCO2_ Il v /%3 /%) (g.19)
fk(xl;),k=i, 1+1,..,N j=1

where E(../a) indicates a conditional expectation operation given a. It

follows from the Principle of 0ptima11ty12 that

v = mn B (el + vy, G /%) (9.14)
fi(’fi)

Tl n- A 2
From (9.10) we see that X7, / X] 18 N(£,D, +X] , o, ) where N(a,b) indi

cates a Normsal random veriable with mean a and variance b. Hence,

E(Uy,, Goy,) /%) = /2—nlc
i
Jm U, ..(8) exp(-(s-£.,D -‘Q‘)a/z a,? ) ds (9.15)
141 i1 1 1

Let the optimal control f, be denoted by £ and let

= o .
zy £,°D, + x3 (9.16)

It is clear from (9.14) and (9.15) that if fi° # 0, then
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2 ~ i}
-egn £,° = 3, E U () / %)

Dy 2 2
s Ki41(8) exp(-(s-2,)" /2 0,° ) s (9.17)
i (-]
where (s)
U 8
K, 41 (8) —;—*—1—- (9.18)

Iet us assume that K, . (s) is a monotonically non-decreasing odd function of

141
s such that Ki+1(s) =

1 sgn s for s greater than some number z .
Dyyy i+l

Inspection of (9.17) and (9.16) shows that there exists a f1° <0 and a

z, > 0 such that (9.17) can be identically satisfled.” Tn other words, the

i
right-hand side of (9.17) is 1. Substituting this z, into (9.18) and making

use of the fact that Ki +1 is odd lead to the result that the optimal control

is given by
A

- Bani(lA-

x
Di i

| - 2) ifl’:\:;| 2z,
(9.19)

0 otherwise

Differentiating both sides of (9.14) with respect to Qi and using (9.15)-

(9.16) and (9.19) ylelds a recursive equation for computing ki(a)

©

1 2 2
— K,,.(8) exp(-(s-y)/2 0,) a8 if|y]| <=
/—2?'-01 - 1+1 i i
K, (y) =
31— sgn y otherwise (9.20)
i

*Thit's is because we have assumed that Dy > Di{4+3. It will not have a solution if
Dy < Dy41. What this means physically is that if the effectiveness of the con-
trol is larger at t;,; than t; , then no control should be applied at ty.
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Tt is clear from (9.20) that if Ki+1(s) is & monotonically non-

decreaging odd function of s, so is Ki(')' A typical Ki(a) has the form

4
K, (s)

1/p + : R

b
-
-1

It only remains to obtain K,N(s) and to verify that it has the form shown.

This can be done by considering the one-stage process. From (9.13) we see

Ug(ky) = Min EC (l£g] + A2 (S‘cl-v + fNDN)2 / &) + (M/2) °N2
(55
(9.21)

Differentiating the right-hand side of (9.21) with respect to £y yields
o - o
sgn £ + x(’;‘:N+fNDN)DN=o (9.22)

which implies that the optimal control f]‘; # 0 18 given by

A=
XN 1 n ~ 1
- —_— == Bgn x_ ir I I b3
Dy Dy *N N ND
b ¢ ° =
N
o otherwise (9.23)



Hence, zy = i%' . Substituting (9.23) into (9.21) and differentiating both
N
sides of the resulting equation with respect to‘;i s We get

My arl%] s /00
3, (%)
1;_:“_ = "n(iﬁ) =
E 1 A
31; sen xy otherwise (9.24)

which shows that KN(s) is an odd and monotonically non-decreasing function of
8 and hence establishes the validity of our solution.

To summarize, we have shown that there exists a set of "threshold"
numnbers zi 2 0 such that (see Eq. 9.19) a control is applied at ti if, and
only if, IQEI >z, and the effect of the control is to bring the state
after the correction to QI = z; sgn QI. The set of numbers z, can be com-
puted by (9.16) where Ki+1(s) are monotonicelly non-decreasing odd function
of s computable backwards by the recursive equation (9.20). Computation starts

at tg with (9.24).

2.9.2 Results of Numerical Work

Agaln, the same uniform model is used. The parameters defining
this approaching guidance are the same as that given in the previous section.
We shall further assume that the last correction is & true correction and
that the standard deviation of the desired terminal miss is 1250 km. It
can be easily shown that the last correction, In our case, is to be executed
at 0.04 x 106 sec. from time of Impact. The first correction time is arbitrar-
1ly set at 0.64T from time of impact and our numerical work studies the
effect of including various numbers of corrections between these two timings.

The results are given in Figures 9.1 and 9.2.
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Figure 9.1 gives the plot of the threshold levels z, versus the timing

i
of the corrections with N, the total number of corrections, as a parameter.
The computation is done backwards from t = 0.96T using the recursive equa-
tions derived in this paper. To save time, the numerical integration at
every step (i.e., over the infinite range) is done by Monte Carlo. It was
found that, for the case of eleven corrections, the computing time is about
four minutes on IBM TO9%. It is of interest to note from the results in
Figure 9.1 that the boundary lines joining the threshold levels approaches

a continuous curve. In Figure 9.2 the total expected velocity correction

is plotted against the number of trajectory corrections where the timings of
these corrections and the corresponding threshold levels are the same as
those given in Figure 9.1l. The computation is also done by Monte Carlo.

The result indicates, as has been found in other studies using linear control

law, that the additional savings obtained with more than four corrections are

almost negligible.

2.9.3 Hard Constralint Problem

Within the realm of allowlng nonlinear control, there is the so-
called hard constraint problem. This 18 the problem of minimizing the rms
values of the terminal miss distance subject to the constraint that the
total (not the expected) amount of the velocity capability is limited and
specified in advance.

Let c] and ¢t

i i
immediately before and after the correction at t

be the amount of total velocity correction capability

i Then we have in addition

to (9.10) the equations



Note c o is the prescribed total velocity capability. The mathematical
problem for the hard constraint case is essentially that of finding fi as a

function of two variables c;_ and ?ti which minimizes

A2
E [ *N+1 ]
subject to the constraint that cI 2 0 for all {.
This problem, as we have formulated &bove, has been solved by Rosenbloomlh
and has also been considered by Orford. 15 The optimum solution which can
also be obtained by using Dynamic Programming shows that there exists two

*
numbers zi**(ci) >z, (c'j'_) > 0 such that:

(a) no control is applied 1if Il;c;_ | = zi*(ci) s

(b) use all the velocity capability left if | gc; | = zi**(c'i') , and
* A o
‘ <| x] | < Z; .

Unlike the case we have already considered, the computation involved for

(¢) apply an intermediate control if z

obtaining the actual optimum solution is rather unmanageable and involves

creating a large number of tebles of functions of two variables.
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2.10 An Error Analysis Program for Interplanetary Transfer

As Indicated in Section 2.1, the theory developed for the basic minimum
effort control is directly appliceble to the case of variable time of arrival
guldance scheme assuming all errors lie in the transfer plane and that cor-
rection mechanization errors are negligible. A digital cowmputer program is
developed applying this theory to the study of guidance problems in typical
interplanetary trips.16 The program (1) performs a linear error analysis
of typicel interplanetary trajectories with assumed rms injection errors
and measurement histories, and (2) camputes a trajectory correction
strategy based on the basic minimum effort theory. It includes & near-
optimum discrete trajectory correction strategy using impulsive corrections
whose spacings are chosen to approximate the ideal continuous strategy. The
analysis of these near-optimm dlscrete strategies extends the study by a
Monte Carlo simulation to include the effect of correction mechanization
errors as well as the effect of varying the time of the last correction.

We present in this section a brief description of the various sub-
programs that have been developed as well as the computer results giving
the velocity requirements for two typical interplanetary transfers (Earth-

Mars and Earth-Venus-Mars swingby).

2.10.1 Description of the Computer Programs

The main program that performs the linear error analysis and includes
the continuous minimum effort correction strategy for typical interplanetary
trips consists of two versions: (1) a direct transfer program that considers
transfers between two massless planets and (2) a swingby transfer program
that considers transfers between two massless planets via a third planet
whose gravity field is taken into account. Both versions assume that the

errors are confined to the transfer plane,
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A. Direct Transfer Program

This program assumes that the vehicle is injected from a massless
Earth and is transferred to a massless planet, The transition matrices
8(T,t), and hence the sensitivities D(t), are obtainable from perturbations
of a nominal Keplerian trajectory. The program at present allows four kinds
of measurements for orbit determination. These are angular measurements
of the direction of the Sun, the target planet, and the Earth, relative to
the star background, and range-rate information from an Earth-based radar.
The accuracies and frequencles of these measurements are assumed to be con-
stant in time. The program also has the option of turning on as well as
turning off the information from the Earth in the middle of the trip, and
turning on the angular information from the target planet. It should be
noted that the information from the Earth cannot be turned on immediately,
as the formulated information rate is initially infinite.

Other inputs to the program are: (1) the eccentricity, semi-major
axis, trip time, and the initial true anamoly; these quantities specify
the transfer ellipse by Kepler theory; (2) the initial injection errors in
the transfer plane which serve as the initial conditions for the Kalman
covariance matrix V(t); and (3) the rms accuracy of the measurements and
the corresponding intervals of observation; this and the information in (2)

allows us to integrate the equations governing V(t).

B. Swingby Transfer Program

This program extends the program for direct transfer to the case
where the transfer is via a third planet. The nominal transfer orbit con-
sists essentially of two heliocentric ellipses connected by a planet-cen-
tered hyperbola near the flyby planet. The additional inputs for this
program are the necessary parameters which specify the second ellipse as

well as the ratio of the mass of the flyby planet to that of the sun. A
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"patched-conic" treatment of the nominal trajectory is used. The trajectory
is taken as & planet-centered hyperbola within a "sphere of influence" near

the flyby plenet such that the ratio of the Sun's "effective" attraction to

that of the planet is less than the ratio of the planet's attraction to the

(total) attraction of the Sun. The boundary of this "sphere of infuence"

is given by

2/5

distance from vehicle to planet _ [ mass of planet
distance from planet to Sun = \ mass of Sun

and this is where the two ellipses are patched to the planet-centered hyper-
bola. The relative velocities of "approach to" and "departure from" the
£lyby planet must be the same so that the point of closed approach to the

flyby planet is halfway along the hyperbolic arc.

C. Discrete Minimum Effort Program

This is an additional program which analyzes near-optimum discrete
minimum effort control strategies including the effect of mechanization
errors. Glven the number and the timings of the corrections, the program
computes the optimum gain k(ti) by using (8.17). A Monte Carlo simulation

based on this discrete strategy 1s performed.

D. Fixed Total Velocity Capability

If we assume a fixed total velocity correction capability somewhat
greater than the theoretical expected velocity requirement, the Monte Carlo
program has the additional feature of being able to control the time of the
last correction so that all remaining fuel is used on this last control,
and the estimated miss at this time thereby reduces to zero. 1In other

words, the last correction occurs at the time tN such that

[ Qi(T, tﬁ) ] / [ D(tN) ] = velocity capability remaining
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ty being then a random variable. It should be noted that X(T,t) for t 2 ty1
is a simple Wiener process.
In the (rare) event that the propulsion left aboard is not sufficient

to make the correction called for at an earlier time t,, i1 < N-1, then the

i
Program assumes, of course, that the correction uses all the fuel available.
This run will then give a terminal miss which is the miss immediately after

this correction.

2.10.2 Examples and Numerical Results

The programs described in the previous section are used for the
study of guidance problems connected with two typical interplanetary trips.
The two trips were selected from the results compiled by Lockheed.17 They
are: (1) a 204k-day trip from Earth to Mars leaving Earth on December 30,
1966; and (2) a 245-day trip to Mars flying by Venus (seventy-five days to
Venus and one hundred and seventy days to Mars). The trip leaves Earth on
September 6, 1970.

The initial injection errors are assumed to be 1n velocity only. These
errors can be obtained by propagating the errors at launch along the hyper-
bolic asymptote predetermined for this trip. Typical values of the errors
at launch based on the Atlas-Agena booster were used. It turns out, after
a simple computation, that for the 20k-day trip to Mars, the 2x2 covariance
matrix elements of the initial injection veloclty error are of the order of

15-20 m/sec and are given specifically by

2
o1 130 J(@reee)

The same injection errors were used for the flyby trip.
The following information rates were assumed: (1) angle information

fram the Sun: rlO mrad at a rate of l/hr; (2) angle information from Earth:
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*> mrad at a rate of 1/hr; (3) angle information from Mars: -2 mrad at a

rate of l/min; (4) Doppler information from Earth: tl m/sec at a rate of l/min;
(5) angle information from Venus (for flyby trip): -2 mrad at 1/min on first
leg, and X2 mrad at 1/hr on the second leg. In all cases, the information
from Earth was turned on after a wait of 3.6 hours so as to avoid an infinite
information rate at the beginning.

The results of the 204-day trip to Mars are given in Figures 10.1-10.3.
In these figures we have plotted the histories of the rms terminal miss and
the average cumulative effort vs the time-to-go for different combination
of measurement histories. For the purpose of comparison, we have also plotted
in Figure 10.1 the corresponding near-optimum discrete strategy using four
corrections (near-optimum in the sense that the timings are not optimized).
It is seen that the correction effort required by the near-optimum discrete
strategy 1s only about 10 to 15% higher than that required by the correspond-
ing optimum continuous strategy.

The sudden drop in terminal miss in Figure 10.2 1s due to the impulsive
thrust which is applied just prior to the time when the information from
Earth vanishes. The control is turned on again very soon (of the order of
a few hours) after the information from Mars is turned on. It is of interest
to note that this is only a few percent more costly than the case of continu-
ous observation (see Figure 10.1). The effect of adding Earth range-rate
information is shown in Figure 10.3. It shows that most of the errors are
corrected out at the beginning; and moreover, in the absence of any angle
information from the planet, there exists an uncorrectable terminal miss
which reflects our lack of knowledge of the actual error in the orbit esti-
mation. This is of the order of 15 km as can be seen by the leveling off

of the curves near the end. It is seen that this uncertainty can be eliminated
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by supplementing the measurements with angular information from Mars
during the last forty days.

The results of the flyby trip are given in Figures 10.4-10.5. Figure
10;h shows the histories of the rms terminal miss and the average cumulative
effort vs the time to go, for the case where only angle information is used.
The Doppler is turned off when the vehicle reaches the end of the hyperbola.
It 1s interesting to note that the corrective effort required for guidance
on the flyby trip as far as Mars is not substantially greater than the effort
required for the single leg trip to Mars.

Computer results for the Monte Carlo simulation of the discrete strategy
shown in Figure 10.1 are given in Figures 10.6-10.8. Figures 10.6 and 10.7
correspond to four fixed correction times, and Figure 10.8 corresponds to
three fixed correction times and a randomized last correction. Figure 10.6
gives the empirical probablility distribution (a sample size of 100) of the
effort used for different rms engine execution errors and different values of
rms terminal miss. It is assumed that the accelerometer reading error o& = 0.
A scatter diagram of the magnitude of the actual terminal miss and the cumula-
tive effort for the case of CB = 0.2 m/sec is given in Figure 10.7. The point
marked X indicates the average effort and the average (absolute) terminal
error under the assumption of no mechanization error. It is seen that a large
nmuber of points fall to the right of this Eﬂ,indicating that the amount of
the fuel carried should be considerably in excess of the average amount used
with fixed correction times. The results in Figure 10.8 show an improvement
in the terminal miss distxribution, especially at the low end, as might have
been anticipated. The same figure also shows the effect of the loss of Iinfor-

mation caused by an accelerometer reading error.
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3. PLANETOCENTRIC GUIDANCE FOR LOW THRUST INTERPLANETARY TRANSFER

3.1 Introduction

In the low thrust interplenetary mission considered here, it is
assumed that the engine is turned off during the central portion of the tra-
Jectory so guidance takes place only in the vicinities of the departure
Planet and the target planet. This means that there is no midcourse guidance
and that the midcourse trajectory is determined by the energy and asymptotic
direction of the vehicle leaving the vicinity of the departure planet.
Accordingly, departure and approach are primarily planetocentric. Further-
more, it is assumed that the low thrust engine has constant specific lmpulse
so that guldance 1s achleved by changing the direction of thrust rather than
the megnitude. Battinl* has considered the guidance problem for a variable
thrust engine in a lunar mission with characteristics similar to this inter-
planetary mission. He devised a feasible (non-optimum) guidance scheme.
Recently, Mitchell2 has derived a guldance scheme, also for a variable thrust
engine, considering only the heliocentric portion of the transfer. The
problem considered here 1is to find an optimum guidance scheme for a constant
thrust vehicle, i.e., a guldance scheme which minimizes the fuel expenditure
while attempting to meet the terminal constraints.

For the purpose of simplicity, three additional assumptions are made:

(1) all the action takes place in a plane containing the planet and the
vehicle acceleration; (2) the vehicle is propelled at constant acceleration;
and (3) while the engine is on, the perturbations due to the Sun can be
neglected. The first assumption permits the optimization scheme to be worked

out ag a two-dimensional problem. The extension to three dimensions would

*References referred to in this chapter are listed at the end of this chapter.




be straightforward. Because the change in masgs is small, the second assump-
tion should change the original trajectory only slightly, and should have
negligible effect on the control scheme. The third assumption is valid in
the vieinity of the planet and, once again, should change the original
trajectory only slightly and have negligible effect on the control schemé.

The problem of optimizing the original trajectory can be stated as
follows: Given a set of initial conditions (position and velocity) and the
equations of motion (which include gravity and the operating characteristics
of the engine), find the trajectory which meets the specified terminal con-
straints and minimizes the loss (in this case the mass expenditure). The
optimization problem requires the solution to a two-point boundary value
problem in the calculus of variations? If deviations from an optimum
nominal are small, the application of the minimizing conditions results in
a neighboring optimum control scheme. This control scheme 1s based on a
linear perturbation from a nominal optimum path and involves the second
variation in the calculus of variations.h It results in a linear feedback
control law, 1.e., the change in the control (in this case the change in
the engine orientation) is linear in changes in the trajectory. If the
engine is behaving properly and the only disturbances are due to deviations
from the original trajectory, any control scheme which satlsfies the
terminal constraints gives the same loss to first order. 1In that case,
the above guildance scheme 1s the best one to second order. However, if
the engine misbehaves (i.e., the thrust is too high or too low), there is
a first order change 1n the loss.

The analytic approach to the problem is based upon the fact that in
the vicinity of the departure planet, the low thrust trajectory can be

divided into three regions: (1) the near-planet region which consists of
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a large number of revolutions while the vehicle gradually spirals away from
the planet; (2) the transition region which lasts severa; revolutions and
in which the trajectory spiral straightens out to approach a hyperbola;

and (3) the far-planet region in which the vehicle 1is propelled to a
specified energy level while asymptotically approaching a specific angular
direction on a near hyperbola. In the approach to the target planet the
same three regions are encountered, but in reverse order (that is, (3),
(2), (1) ).

For both the near-planet and far-planet regions, analytic solutions,
including the optimizing condition, have been derived for the optimum and
neighboring optimum trajectories. Each solution contains a set of five
arbitrary constants (three of which are assumed to be small) that can be
used to match initial and final conditions. A numerical integration
technique has been used in the transition region to check the analytic
solutions and to match the analytic solutions with the numerical solution
80 as to get one complete solution. Perturbation of the conditions for an
optimum trajectory provides a linear feedback relation between changes in
the control (thrust direction) and changes in the state (the angular dis-
tance and velocity components) for different values of the independent
variable (radial distance).

The guidance coefficients are the sensitivities of the optimm con-
trol to changes in the state components. The guidance procedure which
1s envisaged here is that the actual state components of the vehicle are
compared with the state components for the original optimum trajectory.

If the comparison is made with the same radial distance r for actual and
original, the guidance coefficients are called fixed-r guldance coefficients.
If the comparison is made with the same energy, they are called fixed-energy

guidance coefficients. The same technique is used to determine the guidance



coefficients on both the outward spiral when the vehicle is leaving the
planet and the.inward spiral when the vehicle is approaching the planet.

The terminal conditions for the incoming spiral are assumed to be & circular
orbit; hence, the incoming guidance law (unlike that for the outgoing spiral)
is independent of the instantaneous angular position. It is noted that
with initial and final conditions exchanged and no angle constraint, the
incoming and outgoing spirals are 1dentical except that the signs of the
velocity components are reversed. An additional complication for the inward
spiral is to decide when to turn on. The theory of the second variation
provides an expression from which the radial distance of turn-on is easily
obtained from the known energy and angular momentum on the incoming hyper-
bola.

If slow fluctuations in éngine behavior are anticipated, the effect
of such fluctuations must be accounted for in the guidance law. The effect
on the optimum trajectory of a constant blas 1in acceleration is obtained
by rescaling. When there are errors in estimating the trajectory, the
"best estimates” of the state variables are used along with the same
guidance coefficients. The trajectory measurement errors have an effect
on both fuel expenditure and terminal accuracy. Note that the terminal
errors for the outgoing spiral lead to a non-optimum spiral entry at the
target planet and, hence, cause an added fuel expenditure on the incoming
spiral.

The general optimization problem is formulated in terms of the calculus
of variations in Section 3.2 and the neighboring optimum guidance scheme is
outlined. Results for the outward and inward spirals are presented in Sec-
tions 3.3 and 3.4, respectively. Section 3.3 also includes an outline of
the analytic solution for the far-planet region while the analytic solution

for the near-planet region is presented in Section 3.4 with a derivation in
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Appendix A. Section 3.5 discusses the consequences of engine fluctuations
and presents the effect of measurement errors including a numerical example

using a simplified model of the sygtem.
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3.2 Optimum and Neighboring Optimum Control

In this section an‘outline is presented of the calculus of variations
approach to the general optimization problem and its application to optimum
guidance.u In the guidance scheme presented here, it is assumed that the
original trajectory is an optimum one and corrections are based on the devia-
tion from that optimum. The guidance does not return the vehicle to the
original trajectory, but instead it causes the vehicle to follow a neighbor-

ing optimum trajectory.

3.2.1 Optimization Problem

The problem of optimizing the original trajectory can be stated as

follows. Given a set of differential equations describing the system

L . g (x, @ 1)
dr > Uy

where X is the state vector with four components

g is a vector valued function with four components

a 1s the control variable (the thrust direction)

r is the independent variable (the radial distance)
and a set of initial conditions X find the trajectory which maximizes a
terminal quantity @(x, r)r=rf (where rp is the terminal value of the independ-
ent variable) and which gives the specified values of the terminal quantities

¥(x, r)r=r = Y,
b

where Y is a vector valued function with q components (q = 2).
The differential equations satisfied by the optimum trajectory are:*

%% = g (x, o, ) (2.1)

¥ —
Equations given in this chapter are numbered as follows: Eq. (k, J) means
the J equation in Section 3.k.
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2 - (E) @2

o « (&Y (2.3)

where A is the vector of adjoint variables with four components. %ﬁ and %S
represent Yxli and 4xl matrices of partial derivatives, respectively, and super-
script T represents the transpose operation.

The boundary conditions for the equations are

0 = ¥(x, 7) _. -Y (2.4)
b

o = (W F eV S (2-5)

0o = 2 g+ v)mf (2.6)

where gg and g% represent (4x1l) and (qx4) matrices, respectively, and v is
a vector of q constant Lagrange multipliers.
The equations (2.1)-(2.3) can also be written in terms of the variational

Hamiltonian H which 1s defined as

H= A" g

so that
dx
E = % (2'1'5‘)
g'—l):- =—%—a}xI (2-2&)
o = & (2.38)

3.2.2 Low Thrust Optimization

In the low thrust optimization problem formulated here, the radial
distance (r) is the independent variable while the state vector (x) has

four components, circumferential velocity (vb), radial velocity (Vf), angular
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position (@), and time (t). The four components of the adjoint vector (A)
have subscripts one through four corresponding to the respective state variables.
The direction (o) of the acceleration is measured positively outward from the
local horizontal. The magnitude of the acceleration is a and the gravitational
constant of the planet is p.

For the system under consideration, the differential equations satisfied

by the optimum trajectory are as follows.

The equations of motion:

EIQ = - Zg + aCosu
dr r v
r
2 _
EZE . 8" T . aSimx
dr rvr vr
(2.6)
ae _ Yo
ar rvr
a _ 1
dr Vr
The adjoint equations:
S A BV N
dar r rv,, rv, 3
d (arSina + v 2 )
_13 _ aCoso A 4+ 0 A
ar v 2 1 v 2 2
r r
v
0 1
+W2A3+?Xh
r r
da
-3 = 0
ar
ary, (2.7)
= = °
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The Hamiltonian is defined as

av dv
0 r a0 dt
E=MmF *Ywm* STty w

The optimal control equations, found by maximizing the Hamiltonian, are

sing¢ = )

1
cos o = ——m———5—7 (2.8)

Thus, the control («) can be eliminated from Equations (2.6) and (2.7) by
using the optimizing condition, Equation (2.8).
The terminal constraints for the outward spiral are the final energy (Ef)

*
and the final angulsr direction of escape (Gmf) where
E = $v® = 1+v2 + 3v2 . %

em= e+®

® = Arc Tan [l/(v°° ver)] - Arc Tan [ (l—ve2 r)/(vrve r)]

(2.9)
and the subscript f indicates the value of thu quantity at the time of engine
cutoff at radial distance Toe Because the mass flow of the low thrust engine
i1s fixed and positive, minimizing the mass expenditure is the same as mini-
mizing the time the engine is operating. Therefore, the quantity to be maxi-
mized is negative time (the same as minimizing positive time). The payoff J

(including the terminal constraints) can be written with constant multipliers,

vy and v2:

J= -t +v E+y, (6 + ®) at r=r, (2.10)

*The angular direction (Bm) is calculated from the asymptotic properties of a
hyperbola.
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The terminal conditions for minimizing t subject to the constraints on the
final energy and the final angular direction are

+ 0 ®
e

o ®
k2 =V vr + Vo ov

kl = v

r

3 2
Xh = -1
dt dE d
0 =-3r + vy P + \)2 ir (6 + ® ) (2.11)

For the initial optimum trajectory, the final angle is not constrained
because the initial angle for a particular trajectory can be adjusted so as
to give any desired final angle. In that case, the adjoint variable, k3 s 18

zero and the conditions in Equation (2.11) reduce to a simpler set of condi-

tions.
dE
Mo v %
dE
A, = v. /=
2 r/ at at rer, (2.12)
which further simplify to
MY
%
2 2
xl + 12 = 1
at r=r,

The initial conditions for the outward spiral are circular velocity

at same radial distance (ro).
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v
2] 2

v, = O )
r at r=r,

The same set of conditions, circular velocity at some radial distance,

serves as terminal conditions for the inward spiral.

3.2.3 Control Scheme

The neighboring optimum control scheme presented here results in a
linear feedback control law which attempts to meet the terminal conditions
while maximizing the payoff. Because the fourth state variable, time (t),
is not constrained and does not enter into the equations of motion, it can be
neglected in the formulation of the optimum guidance problem (even though it
1s the quantity to be minimized). Therefore, the changes in the state (6x)
and the changes in the adjoint (5\) are both three-vectors, and the change in

the control (sx) can be written

T
b = ¢ & = ¢y bve + ¢, évr + c3 56

where ¢ is a three-vector of guidance coefficients in the linear feedback
control law. The guidance coefficients ¢ are chosen so as to satisfy linear
perturbations on the conditions for an optimum trajectory.

In particular, from the optimizing condition in Equation (2.8), the
change in control is a linear function of the change in the current value of

the adjoint variables.
) —l.aéhl-ﬂ-hlé)\a ]
2 2
Mot

The effect of changes in the current variables on the variables at the original

6o 6\ (2.13)

o

final point can be calculated numerically by perturbing the equations of the
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system (2.6) and (2.7) after using the optimizing condition in Equation (2.8)

to eliminate the optimum control (o).
bx $ ’xk &x

N &, B 5\ (2.14)

where the §'s are 3x3 transition matrices. Linear perturbations on the ter-
minal conditions and the terminal constraints result in three conditions on
the values of the variables at the original terminal point which can be

written

0 = (Lx bx + L, 6)\)r=rf (2.15)

where the L's are 3x3 matrices.

For the outward spiral, the explicit form of the above relation can
be written from linear perturbations of Equations (2.9) and (2.11) as a
set of six equations for nine unknowns (6x, 6A, évl, Gvé, érf) and hence
results in three conditions on the six variables of interest. The six

equations are:

0 = 8E = A\ éve + V. ov_  + i 6rf
3® 3® a
0 = becn = ave 6Ve + ET 6Vr + ir (9"‘ ®) 6rf+69
3 ® d
0 = -8) + v éve + 6vy vy + by, 5, + 3z (-kl + vy ve) or
3® d
0 = -6A2 + v 6v& + bvy v+ 6v2 >, +3F (-Al + vy ve) bry
0 = -6k3 + 6\)2
bv
T dE dE d
0l=—2 +\)16(a;)+6vla}-+6\)23(9+®)
Vr
d 1 dE
+ d—r- (-V_r + Vla) 6f (2‘16)



with the nominal values v, = k3 = 0.
Combining Equations (2.14), (2.15), and (2.16) and solving for the control

(5a) in terms of the state (6x) yields the guidance coefficients
-1
by = o, (Lx ey + Iy QM) . (Lx &t Ly QM) &x (2.17)

For the inward spiral, the terminal conditions (2.15) include the trivial

condition A, = O as well as two non-trivial conditions,

3
0 = éve
0O = Gvr at r=re

The same anelysis as sbove holds. Because the third state variable, the
angular position (6), is not constrained and does not enter into the equations
of motion, it can be neglected in the formulation of the inward guidance
problem. In this case, 6x and 6\ are both two vectors instead of three

vectors.
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3.3 Outward Spiral

In this section the optimum trajectory for the outward spiral and the
assoclated guidence coefficients are presented for a typical set of initial
and final conditions and the analytic solution for the far-planet region is
outlined. F¥or the purpose of simplifying the presentation, the units of all
varisebles will be normalized so that both the acceleration of the vehicle
(2) and the gravitational constant of the planet (p) are unity. Therefore,
when the (normalized) radial distance is unity, the acceleration of the
vehic}e will be equal to the gravitational attraction of the planet; the
clrcular velocity will be unity; and the period for a circular orbit at
that distance will be t = 2w. Table 1 presents & comparison between nor-
malized and conventionsl units for the planet Earth using two values for
the vehicle acceleration.

Table 1
TWO SETS OF NORMALIZED UNITS FOR EARTH

a 0.1 cm/sec2 0.4 cm/se02
r=1 400,000 mi 200,000 mi
v=1 2600 ft/sec 3700 ft/sec
t=1 9.3 days 3.3 days
v, 11,600 ft/sec 16,500 ft/sec

(for r=10)
v, 36,800 ft/sec 52,400 ft/sec
{for r=100)

For the remainder of this chapter, these normalized units will be used instead

of conventional units. In general, the relation between the variables using
*

conventional units (represented by superscript asterisk, i.e., r ) and the

normalized values 1s shown below.
* T
r = a2pr
* -3/4
L 5-11
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v. = a'p'v,
101

B = a2 uy2 g

The angular position 6 is in radians.

3.3.1 Original Trajectory

In Figure 1 the last few revolutions of a typical (optimum) outward
spiral are presented. Because the acceleration due to the planet gravity
varies inversely as the radial distance (r) while the vehicle acceleration
remains constant, the characteristics of the optimum trajectory can best be
understood by dividing the trajectory into the three regions discussed in
the introduction: (1) the near-planet (or small r) region in which the
gravity acceleration is much larger than the vehicle acceleration and the
trajectory consists of & large number of revolutions while the vehicle
gradually spirals away from the planet; (2) the transition region (perhaps
fromr = .3 tor = 2), where the two accelerations are comparable and the
trajectory spiral straightens out to approach a hyperbola; and (3) the far-
planet (or large r) region, where the gravity acceleration is much less
than the vehicle ecceleration and the vehicle is propelled to a specified
energy level while asymptotically approaching a specific angular direction
on & near hyperbola. The actual shape of the trajectory in the transition
region is relatively independent of both the initial and final conditions.

The optimum control angle () for the same trajectory is presented
in Figure 2 (with initial conditions at r = .02 and terminal conditions &t
r = 10). The dashed line represents the angle made by the tangent to the
motion. At cutoff the thrust direction coincides with the direction of

motion. The behavior of the control in the small r region is determined from
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an approximate analytic solution which is discussed more fully in Section 3.k4.
The optimum control in the small r region consists of a non-periodic term
growing as r squared plus two separate oscillations of period 2w in the
angular position. The first oscillation, which is the dominant one shown in
Figure 2, grows approximately as r. The second oscillation, which is due

to the initial conditions and the dynamics of the motion, decays approxi-

mately as the square root of r.

3.3.2 Guidance Coefficients

The optimum guidance coefficients (cl, C.» c3) for the outward

2
spiral, calculated according to Section 3.2, are presented in Figure 3

where the change in control (6¢) is written

b = ey Gve + s évr + c3 66 (3.1)

During the entire trajectory, the guidance is relatively insensitive to
changes in the radial velocity (avr). These coefficients are called fixed-r
guidance coefficients because r is considered to be the independent variable
and the changes in both the control and the independent variables are cal-
culated as the difference between the current values and the values on the
original optimum trajectory compared for the same radial distance r.

Under certain conditions it might be desirable to use the energy (E)
as the independent variable. For instance, one of the conditions for the
r solution to be valid is that the variasble r be monotonic. For very small
r it is possible for oscillatory terms to arise in the radial velocity (v,)
so that the radial velocity changes sign and the radial distance is not mono-
tonic. Using the monotonic variable energy as the independent variable cir-
cumvents this difficulty. Fortunately, the fixed-energy guidance coeffi-
cients (with energy as the independent variable) can be calculated directly

from the fixed-r coefficients without going through & new solution. In

3-16




order to distinguish between the two sets of variables, the notation con-
vention that will be followed in this chapter is that the changes with the
energy (E) as the independent variable will use E as the argument while the
changes with r as the independent variable will, in general, still have

no argument. Therefore, the optimum fixed-energy guidance coefficients

will be written
6a(E) = ¢;(E) &vg(E) + cp(E) v, (E) + c5(E)  &0(E) (3.2)
The relation between bx, 6x, and Sa(E), &x(E) is

dor

& = &(E) - = &r(E)
dve
6v9 = 6V9(E) - i &r (E)
av.
v, = 6vr(E) - ——d—; 6r(E)
0 = 60(E) - g—g sr(E) (3.3)

1 ]
where 6r(E) = -r g 6ve(E) + v, avr(E) .
Substituting Equation (3.3) into Equation (3.1) and comparing terms with

Equation (3.2) yields the relation between the two sets of coefficients

f

cl(E) c1 + kve

ca(E) = ¢, +kv,

it

03(E) c3

dav
0 r de do r2 (3‘14.)

where k=<clj?i'—+c27.r+°33"3}'

The fixed-energy guidance coefficlents for the outward spiral are
presented in Figure 4, Notice that in the small r region the large oscilla-
tions of the fixed-r guldance coefficient c, are not present in the fixed-

energy coefficient, cl(E).
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3.3.3 Analytic Solution in the Far-Planet Region

An approximate solution for the state and adjoint variables has been
derived which is valid for large values of radial distance (r). The solution
contains the first few terms of a power series in r-% which satisfies the
differential equations of the system (2.6)-(2.8). It contains a set of five
arbitrary constants (three of which are assumed to be small) which can be
adjusted to meet five of the initial and final conditions. The sixth con-
dition is the current angular position (8).

In the orlginal optimum trajectory, when the angular position is not
constrained, the adjoint varieble corresponding to the angle 1s zero (A3 = O),
and the terminal conditions are satisfied when the three small constants are
zero. When the angular position is constrained, one of the small constants

is equal to 6A_ = A3 s wWhile two of the terminal conditions are met by adjust-

3
ing the other two constants. It turns out that the latter two constants are

much smaller than ks so that they can be neglected in the remainder of the

analysis.

*
The approximate analytic solution for the varisbles is

1
= -2
v a T (1 + az/r) + A

] 3

1 1 1
5 .2 - H -
22 r2 (1 + aa/r) a 2 X3 r

<
]

A, = 1- 3/4 a r"3/2 A (3.5)

where 8, and a, are arbitrary constants and X3 is assumed to be small. The

angular distance the vehicle travels after the engine is turned off ( ® ) can

be aspproximated by the ratio between the circumferential velocity and the

It can be shown that Equation (3.5) satisfies the first few terms of the
equations of motion and the terminal conditions.
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radiel velocity at the point the engine is turned off,
v
~ ) ~ % -1
®f CVID = 2 8.0 r + ks
b

80 the constrained asymptotic. angular distance (em) can be written in terms

of the other variables as

-n -5 JE@)

The control angle () is equal to tan™t ()‘2/ Al) 50, for « near /2 radians,

the change in control can be written in terms of the changes in the state

[z T8

_ 50 + r, 6<vr>
1 = ———
1 - r
«/rf

Thus, the fixed-r guidance coefflcients can be determined amslytically

variaebles as

S = -6A

(3.6)

from Equations (3.5) and (3.6). For the original optimum trajectory in

Figure 1, the values of the two arbitrary constants are

a, = 1.28
8, = -.18

The fixed-energy guidance coefficlents can be derived from the fixed-r ones
in Equation (3.6) using the transformation in Equation (3.4). For the large
r analytic solution the function k is small so the two sets of analytic

coefficients are essentially the same.
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cl(E) T ey
e, () = c,
c3(E) ¥ e

The numerical results in Figures 3 end 4 justify this for r greater than
sbout 2. For the trajectories which have been examined, both the analytie

solution and the analytic guidance coefficients seem to be adequate for r

greater than two or three.
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3.4 Inward Spirasl

In this section the optimum turn-on point for the inward spiral is
derived and the guldance coefficients are presented for a typieal set of
initial and final conditions. An approximate analytic solution is pre-
sented for the small r region and the guidance coefficients are derived
In closed form. With the initial and final conditions reversed, the
outward spiral and the optimum control in Figures 1l and 2 can be considered
as the original optimum trajectory and control for the inward spiral. The
only difference between the inward and outward trajectories is that the
signsg of the velocity components are reversed (ve and Ve are negative for

the imward spiral).

3.4.1 Engine Turn-On

There is no angular dependency in the inward spiral, so dnly two
independent variables are needed for guidance; for instance, the two com-
ponents of velocity or, what is more convenient when considering engine
turn-on, the radial distance (r) and the angular momentum (h = rve). Before
the engine is turned on, the energy (Eo) and the angular momentum (ho) are
both constant. It will be assumed that the energy of the incoming vehicle
i1s the same as the energy on the original optimum; thus, 1f the angular
momentum is the same too, the optimum radial distance to turn on the
engine will also be the same. Therefore, the problem 1s to choose the
change in the radial distance of turn-on (éro) as a function of the change
in the initial angular momentum (6h°) so as to minimize the additional loss.
Furthermore, it would be desirable to make use of the numerical computation
scheme which has been set up to calculate the fixed-r guidance coefficients.

The notation introduced here is that Ah(E) and xr(E) are the adjoint

variables (corresponding to h and r) which give the sensitivity of the
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payoff J to changes in h and r when the energy E is fixed. The first/varia-
tion of the loss is zero so the expression which must be minimized involves
the second variation. The reason the first variation is zero is that the
sensitivities kh(Eo) and kr(Eo) are zero at the start of the original
trajectory because that trajectory optimized the ho and r, for fixed Eo'
Therefore, the loss due to small changes in h and r is of second order

and is given by Equation (4.1).

%3 () =% 6\ (B) th +3 6r_ (E) br_ (k1)
The computation scheme is set up to use r as the independent variable in
calculating the effect of small changes in the varisbles at the initial
turn-on point (6ve s BV, 8N, 6%2) on the variables at the final point
as outlined in Equation (2.14). In other words, we do this by perturbing
the equations of the system (2.6) and (2.7) after using the optimizing
condition in Equation (2.8) to eliminate the control. The terminal con-
straints are circular velocity at the final radial distance (rf). Hence,
in order to meet the terminal constraints, the changes in the velocity

components at the final radial distance must be zero.

0= éxx 6xo + ka

6A° (k.2)
where the 3's are 2x2 transition matrices. The fixed-r changes are now
expressed in terms of the fixed energy changes. From the definition of
angular momentum and the relation between the two sets of variables as pre-
sented in Equation (3.3), the changes in the varisbles can be written

Sve 6ho

v, r
v, b
r=r
o
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where

I~ ! 7] '
av av f v
0 ' 0 _2 0
1+ &% , & * % T + 7
l 1
P= oo ..o e g = - -
) , 2
.dﬁ. rav 1t 14 E‘_’E rav - :Q_ t ve -l
ar dr r v 2
1 r 1 rv,
L B L r=r
A o
(%.3)

and where the left 2x2 matrix arises from change of independent variable
from E to r. One of the properties of adjoint variables is that in matrix
notation they transform as the inverse transpose of the state variables.
(Thia property 1s due to the fact that the change in the loss must be the
same no matter which set of variables is used.) Therefore, the relation

between adjoint variables can be written as
o (E) 8A,

A A
e (2) 2 (4.1)

r=r
o

Solving Equations (4.2) - (4.4) for the relation between the two fixed-

energy state variables and the two fixed-energy adjoint variables yields

2 (Eo) Sh
= Q
Blr (EOO) | 8 }
91 %2 T -1
where Q = 9y 9o = 2P [§Ax] 3 P (4.5)

Substituting Equation (4.5) into the expression for the loss in Equation (4.1)

gives the change in loss as & quadratic function of the changes in the angular
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momentum and the radisl distance (5ho and éro). The optimum change in the

radial distance for turn-on (6rop minimizes the quadratic function and

)

both 6r°p and the corresponding additional loss can be calculated in terms

t
of aho.
2 _ 2 2 2 1 2
6" J (Eo) T2 q11 aho *tz (q12 + q21) 6ho 6ro tz q22 6r°
2
topy = - % (agp + apy) 8B /ay,
intman 3 (8.) = ¥ [a3 - % (agp * apy) /oy ] 0.2 (1.6)
n o/ T 2 (%11 T W \93p T Y/ /9 | %0, :

The optimum redial distance for turn-on (ropt) and the corresponding loss
are plotted in Figure 5 as a function of angular momentum for the incoming
spiral of Figure 1. For comparison, the total normalized time of the spiral

in Figure 1 is 9.6 units.

3.k.2 Guidance Coefficients

For the inward spiral the guidance depends only on the two velocity
components

oy = ey 6ve + ¢, 6vr

The fixed-r guidance coefficients, calculated according to Section 3.2, are
presented in Figure 6. Both coefficients are nearly constant in the large r
region. 1In the small r region the coefficient ¢y has absolute value less
than unity and oscillates around zero, while the coefficient ey is much
larger, decreasing to a minimum of one and one-half before rising at the
end. The gain increases indefinitely only at the very end of the inward
spiral.

The fixed-energy guildance coefficients are pregsented in Figure 7.

The coefficient ca(E) starts out very large (above 100) because near r=10
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about 99 percent of the total energy is in the radial component of
velocity. Thus, if one 1is comparing.two trajectories with the same
energy and the same circumferential velocity, but different radial velo-
cities, there must be a large difference in r which would call for a

large change in control.

3.4.3 Analytic Solution in the Near-Planet Reglon

The approximate solution in the small r region includes a general
solution to the equations of the system (2.6)-(2.8), which is a power
series in r that is well behaved near the origin (as r goes to zero), plus

a particular solution. The analytic solution which has been obtained is

-3 5 b, 2

v
8 = r 2 (1+ ST+ Ave)
v, = 2 r32 (1 o3 2t 4 av_)
_ 5 L 2
Xl = 1+ 5 r o+ Akl

& (- 33 rl‘L + sz)

NS~
I

where

2
“mi ., 1.-2 61 -3/2 -3/2 2
bvg = ;ga B, r 1 sin(-3r = + Bi) [1 + ( 5 -2 my) k3 r ]+ A3 r r

2 .
- - 61 -3/2 -3/2 4
v, = - Egi B, T oL cos(-ir 24 Bi) [l + ( 5 - 12 wi) k3 r 3/ ]-—4 k3r 3/ r
2 . )
Bh, = Egi (k2 - 16 mi) B, r™ gin(-% r2 + Bi) [l + (5-2 mi) X3 r 3/2 ]

+ X3 r-3/2 (-1 + 26 rii) r?

2
A, = - :E (22 - 8 mi) B, -0 cozr;(-%-r-2 + Bi) + A3r-3/2 (-3 - hhrh)
i=1
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m. = 1-/10 = 0.959

1 4
. T+/10 ~ (%.7)
m, T 2.541

and where Bl’ Be, and A, are small constants and Bl and 82 are arbitrary

3

constant angles.
Appendix A conteinsg a derivation of the solution for the case where

A, = 0. Except for phase differences, B,, the arguments of the sine and

3 i
cosine terms (- r2 4 Bi) approximate the angular distance 6, so the oscil-

latory terms are periodic in 6 with period 2n. The r dependence of the
amplitude of the oscillatory terms was obtained by the method of averaging
(see Appendix A). One of the osclllatory terms grows with r while the other
decays. The solution has been checked numerically on the digital computer
by integrating from r = .06 to r = .1 (about eight revolutions), and the
theoretical and numerical values for the exponents m, and m, matched to
within one percent. For most of the numerical results presented in this
paper, numerical integration was used down to r = .1 and the analytic solu-
tion for r less than .1l. For the original optimum trajectory in Figure 1,

A, = O and the values of the other four constants are

3
B = 39x 1073

1
-6

B, = 66 x 10

Bl = 27.38 radians

82 = 23.72 radians
For the inward guidance the angle 1s not constrained, AB = 0, and four
constants (Bl, Bys Bys B2) determine the motion in Equation (4.7). Four
conditions on the motion are the two current components of wvelocity (ve and

vr) and the two terminal components of velocity (circular velocity at rf).
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Therefore, the four constants can be calculated in terms of To and the
current velocity components. Substituting that expression for the four
constants into the adjoint variables (Ml and Ake) in Bquation (4.7) yields
the latter in terms of the velocity components as shown in Equation (4.8).

1 -m
(r2 Vg - 1) pm2 1,72 sinA

A, =1+ (14 + 4 /I0) (r%v9-1)+8f1—0

1 1 - pm2 - m
2 3 5 (r% vr-2r2) ;:)m2 TP, 2 cosA
A = ¥ + (4 + /10) (r v.-2r°) +2 /10 l_pﬁz_ml
r
where p = £ <1
r
a o= et (4.8)

Because the adjoint variables are known, both the optimum control
and the guldance coefficients can be written in closed form. The guidance
coefficients are obtained by differentiating the expression for the inverse
tangent

)\l 6A2 - >‘2 6)\1
bar =

From Equations (4.8) and (4.9) the approximate guidance coefficients can be

determined.
my - m)
c1=r5/2 [lll»+ll-,/10 + 8(‘/10‘) — 1)]
l-p
m -
c2=r% [h+/:[o+ 2/10p (4.10)
(1 - p"2 " ™M)

For small r the coefficient cy is much larger than cys i.e., the optimum

guidance is dependent primerily on the radial velocity component.
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The fixed-energy guidance coefficients can be derived from the fixed-r
ones by using the transformation in Equation (3.4) and the result (for small
r) is

1
e (E) = z¢;

ca(E) = ¢,

It is interesting to compare the analytic solution for the optimum
trajectory in Equation (4.7) with the analytic solution for a family of non-opti-
mum trajectories suggested by Reference (5). Iet the control angle of the
non-optimum trajectory be given by tan-l (svf/ve) where 8 is a parameter
which can take on values such as zero (for circumferential acceleration) and
one (for tangential acceleration). Using the same technique as in Appendix A,
it can be shown that the approximate analytic solution for this non-optimum

trajectory is

d
il

1
r2 [ 1+ (3-8) rh +r° Ave* J

v = 2p3/2 [1+ (-27 + 95 - 28°) rl‘+mrr*]

2

My = Br " sin(-% r™° + B)
* -m 1 -

bv, = -Br cos(-+ r ° + B)
_ 1ll-s
= E

where B is a small constant and B is an arbitrary constant angle.

For the case of tangential acceleration, the non-optimum solution is
similar to that of Reference (5) which uses 6 as the independent variable.
For the case where s is one-half, the root m is 2.5 which 1is very close to
the root m, = 2.541 in Equation (4.7). The non-optimum solution is not used
in this report, but it is introduced here to show how the dynamics of the

optimum solution compare with a non-optimum solution.
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3.5 Engine Misbehavior and Measurement Errors

The guldance coefficients derived in the previous sections are based
on a vehicle with constant acceleration when the deviations from the nomi-
nal are known exactly. This section shows how the guldance law must be
modified to account for both long-term fluctuations in acceleration and
errors in measuring the terminal value of the state. A method is presented
for calculating the additional loss due to measurement errors, and numeri-

cal results are given for a simplified model of the system.

3.5.1 Modified Guidance Law for Engine Misbehavior

Before one can talk about a guidance law accounting for engine
fluctuations, it must be assumed that the estimated future acceleration
devietions from nominal are proportional to the present deviation, i.e., for
r' 2o,

sa(r') = k (r', r) sa(r) (5.1)
For example, the estimated acceleration change represented by k(r', r)
could be exponentially decaying with time or it could be constant. The
modified guidance law will have the form

Sy = ey éve + e, 6vr +c, 68 + ey Sa, - (5.2)

3

where the first three coefficients are the same as before and the fourth
allows for the expected deviations in acceleration. The derivation of

the modified guidance law is based on the original derivation of the
neighboring optimwm control scheme in Sectlon 3.2 and uses much of the

seme notation. The effect of small chaenges in acceleration (6a) on the
state and adjoint variables can be calculated by perturbing the equations
of the system (2.6) and (2.7) after using the optimizing condition Equation

(2.8) to eliminate the control. In particular, the variations of the state
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and adjoint variables at the original final point (rf) are given by

“5x (e, &, | bz
lsxi g, By 1 oA
iTe
rf { Qxx ka %S !
+ ' sa(r') dr'
l¢ : g g
T e A (axae. )7‘ J (5.3)

where the notation of Equation (2.1%) has been used.
When the future deviations in acceleration Sa(r') are proportional to the
current deviations as in Equation (5.1), the last term in Equation (5.3)

can be expressed as a linear function of &a(r):

‘e (e & | [ 3
po' XA 26
’ | ca k(r', r) dr' sa(r)
2
e [t ] ()
X
= J sa(r) (5.4)

A
a

The terminal constraints allowing for Ga(rf) become

0= (Lx ox + L & + L 6a)rf (5.5)
in the notation of Equation (2.15) where La is a 2x1 vector which gives the
effect of changes in the final value of acceleration on the terminal condi-
tions. For the inward spiral, La. is zero because the terminal conditions

are not a function of acceleration. The change in control which is needed
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to meet the terminal constraints is calculated as in Equation (2.17) and

it is given by
-1
bar = o (Lx §x). + L}\ é)\)\) ) [(Lx ¢§xx + L). Qkx) Ox + (Lx *a + LA 7‘a. + La) 63]

(5.6)

which we note has the form of Equation (5.2).

The modified guidance coefficient c), has not been calculated numerically,
but, for short term fluctuations in acceleration, a very rough approximation
to the coefficient can be obtained relatively simply. If the acceleration
deviation lasts for & short time, the expected future change in velocity com-
ponents ( 606 and bwArr) can be approximated by the integral of the expected

acceleration deviation

r
t
ov, = J %"-’ k (r', r) ar' sa(r)

e r
Ty
v = L9852 g (¢!, r) ar' Salr)
r v,
r

Thus, one might say that an acceleration deviation 6a(r) which lasts for &
short time has approximately the seme effect as deviations in the velocity
components equal to 699 and bGr. Under this assumption, a rough approxima-
tion to the guidance coefficient c), would be

r ol

b g b g
= cosy ' ' coso 1 t
ey c, f v, k(r', r) ar' + czf V. k(r', r) dr
T

For exemple, if the expected acceleration decayed exponentially with time

- [
k(r', r) = e ¥ (t'-¢) (5.7)
The approximate guidance coefficient c), would be
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N e,
e, = - cose + ¥ sing (5.8)

If the guldance coefficients oscillate, the average values of cys © and o

2
should be used in Equation (5.8).

The guidance coefficient ¢, can be calculated for any fluctuation in
acceleration which can be predicted. For the special case where the engine
has a constant acceleration bias, a different approach may be more appropriate.
Normelized varisbles were explained in Section 3.3 and for most of the results
it has been assumed that all varisbles have been normalized so that the
original (constant) acceleration of the vehicle is unity. If the accelera-
tion changes to & new constant value, a&ll the variables can be renormalized
to the new value. For instance, assume that it was suddenly discovered that

the engine acceleration was eight percent higher than the original value.

The new current (normalized) values of the state variables would be

r g higher
\A 2% lower
V. 2% lower
E Lq lower

Furthermore, the new (normalized) terminal energy would be four percent lower
than on the original optimum trajectory. The change in terminal distance

(Grf) would be given by

- 4E
Brf = 68/ ar

In the early part of the spiral, the change in the control due to the change
in the final terminal position can be calculated in the same way as before;
however, near the later part of the spiral, both the original optimum tra-
Jectory and the guidance coefficients can be written in closed form, so it
is only necessary to change r, in Equation (3.6) for the outward spiral, or

Equation (4.10) for the inward spiral,to obtain the new guidance coefficients.
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3.5.2 Modified Guidance with Terminal Errors

For the outward spiral there is an additional source of loss because
terminal errors in the outgoing spiral lead to a non-optimum spiral entry
at the target planet and, hence, cause an added fuel expenditure on the
incoming spiral as explained in Section 3.4. Iet he represent the sensi-
tivity of the angular momentum at the arrival planet (ho) to changes in the

asymptotic angular direction (6_) at the departure planet so that

tn, = hy 80,

From Equation (%.6) the change in the payoff is

2
25 = -1k (s0,) (5.9)

where
2
ko= [‘111'%(‘112+921) /%2] h92

It is possible to modifyy the guidance law of the outgoing spiral to
take into account the additional loss in Equation (5.9). The payoff

function J in Equation (2.10) will be modified from

J = -t + vy E + vy 8, o
r

to X >
J = -t + vy E -5k (ew - emf) rer,

where e°°f is8 the asymptotic angular direction of the original optimum tra-

Jectory when the angle is not constrained. The analysis proceeds as before

except that instead of 66, being constrained to zero,
66 = -6A3/k (5.10)

The analytic expression for the guidance coefficients in the large r region

is derived in Equation (3.6) which is
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6, = Ay (1- p-%) + p-% (ve/vr) + 0 (5.11)

where p = rf/r =21.
Also, from the analytic solution in the large r region, an approximate expres-

sion for the adjoint variable X3 is

1 1

k3 = 22 p2 (kl - ve/vr) (5.12)

Fram Equations (5.10)-(5.12) the change in control can be written in terms

of changes in the stete variables as

i 1 1
60 + (p"2 - 22 r?/x) 6(ve/v )
S = -8\ = - - 3 (5.13)
(1L - p"2 + 22 r2/x)

vhere p = rf/r 21

For large k, the modified guidance law in Equation (5.13) only deviates
from the original one in Equation (3.6) near engine cutoff, and it reduces
to the original one as k approaches infinity.

The actual values of both h, and k will depend on the particular trip.

6
For instance, for a low energy 180-day trip from Eerth to Mers in 1975,

excess velocities at departure and arrival are about 25,000 ft/sec and the
is about 109 (mi)e/sec. For this trip the normalized value of k

]
for leaving the planet Earth with a = 0.4 cm/sec2 would be about th.

value of h

For the inward spiral there is no additional loss due to terminal
errors, but it 1s possible to reformulate the optimization problem so as to
specify the covariance of the terminal errors. We know6 that including
additional constant multipliers 1n the loss function is equivalent to mini-
mizing the loss function subject to constraints on the covariance of the
terminal error. In particular, for the inward spiral, the payoff J is modi-

flied from

J = =t +y v, +v Vv
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0

v. = O
r

Al = v

to

1 42 2
J o= -t+dk (vg-1F) +dk, (v)

1
- - 2
A k) (ve r 2)

S
L[}

ks (vf) r=r, (5.14)

where k1 and k., are the two constant multipliers.

2
The terminal errors (i.e., the deviation from circular velocity at the terminal
point) are due to errors in estimating the terminal value of the state as well
as the fact that the control may not drive the estimated terminal error to
zero. Therefore, the allowed terminal errors must be greater than the
covarience of the errors in estimating the terminal state, and they will
increase as the two constant multipliers decrease.

In the small r region the optimum control and the guidance coefficients
for the modified payoff in Equation (5.14k) can be obtained in closed form
using the same approach as in Section 3.4 For the case where kl =4 k2

the new guidance coefficients can be written in a particularly simple form,

name Ly,
m2-ml
cl = r5/2 (1,* + ll- /-10) k(p) + r5/2 8 ,/10 mp-m
(1-9p2 L+8/0r, k)

™

c, = r% (& + /10) k(p) + r% 2 /10 : fm
(1-22 L 48/Br, ¥
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xp) = e )

I m,-m 1 myem
(1-p2 t+8/0r2/k) (1-p2 te8/or2o2 1 /)

po= T =1 (5.15)

For large k1 the modified guidance coefficients in Equation (5.15) deviate
from the original ones in Equation (4.10) only near engine cutoff, and they
reduce to the original ones as kl approaches infinity. 1In the limit, as r

approaches rf, the guidance coefficients in Equation (5.15) become

¢ £ o1
c, $ kl = k2

3.5.3 loss Due to State Measurement Errors

% The original trajectory is optimized with respect to the control
angle (o), so that, with nominal engine performance, all control schemes
which meet the terminal conditions give the same loss to first order. To
second order, the change in payoff between the optimum control scheme (dopt)
and any other control scheme (o) 1s equal to the integral of a known function
(the second partial derivative of the Hamiltonian with respect to the control)

times the square of the difference in control from the optimum.

2 f 3%y 2

& J = i - (o - “opt) ar (5.16)
r Odf
[o]

where 62J is the second order change 1in payoff.

When the optimum guidance law derived here is used,

by = ¢y éve +c évr + c., 66

2 3

the only difference, to second order, between the optimum control and the
actual control is due to errors in estimating the state variables used in

the guidence law. The expected value of the second order change in payoff
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is a negative definite quadratic function of the covariance of the errors
in estimating the state. The conditional mean is the estimate which mini-
mizes the coveriance of the error, so it is the estimate which should be

used. The expected value of the change in payoff, E [62 J] , is

E[&zJ]— fléi* ov (e, &v. + c. &v._ + c. 60) ar
= 1 7 c ey bvg + oy bV, + cq
To

5 1 (5.17)
where é—g = -(Xla + Aaa)z/v and cov means the covariance of the error
3 r

in egtimation.

When there are errors in measuring the independent variable (r), there
w11l be an additional difference between the optimum control and the actual
control because of the error in calculating the original optimum control
(aopt)' In that case, the expected value of the change in payoff in

Equetion (5.17) is changed to

r

i

2

2.7 _ 1 OH o

E [6 J] -j ——Ba cov (c1 vy + ¢, v, + cq 86 - 3o §r) dr (5.18)
r0

Nj=

¥hen there are fluctuations in engine acceleration, the loss due to
control is still second order, but there may be a first order change in the
loss function which is independent of control. The actual loss is the total
mass expenditure, so the loss depends on the mass flow as well as the elapsed
time. Because the mass flow () may be a function of acceleration, i.e.,
@ =1 (a, t), changing the acceleration may result in a first ordér change in

the mass expenditure.
tr
8 = 5[’[ z’n(a,t)dt]
(o}

The second order loss due to control can still be calculated using

Equation (5.16), but when there are fluctuations in engine acceleration, the
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optimum control (dopt) must allow for all the fluctuations. If the future
acceleration deviations are proportional to the cufrent deviations as shown
in Equation (5.1), and the modified optimum guidance law in Equation (5.2)
is used, the expected value of the additional loss includes the effect of

estimating the current acceleration deviation, and it is given by

2

E [6 J] I 1 -E—g cov (cl vy + ¢, bv_+ ey 80 + ¢) 6a) dr (5.19)

If there are statistical fluctuations in the acceleration which cannot
be predicted accurately, these fluctuations introduce a second source of
loss. In deriving the modified optimum guidance law, the coefficient c),
was celculated under the assumption that the estimated future acceleration
deviation 6a(r') was k(r', r) times the current deviation éa(r). Because
of statistical fluctuations, the difference, &a(r')-k(r', r) éa(r), will
have & probability distribution (with zero mean). Therefore, in addition to

Equation (5.19), there will be a second socurce of loss given by

E[é J] J;%f-gcov(éa‘)dt

where the notation in Equation (5.3) is used, and

~ -1 -~ ~
& = oy (L 8y + Ty &) - [, &+ 1, 8+ I, Balry) - I k(ry, 7) Galr) ]

with
r i g
J’ o8 [ég(r') - x(r',r) 6a(r) ] ar!
2T
3 og
r Ax AA S%aa A

Notice that the second source of loss can be calculated numerically if

cov [ﬁa(r‘) - k(r', r) sa(r) ] is a known function.
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This coveriance depends only on the statistical properties of the engine
fInctuations and not on observation errors., Thus, stetistical fluctuations
in engine acceleration introduce an additional loss which cannot be corrected
by making more accurate observations. In the steady state example given in

the following section, only losses due to Equation (5.19) will be considered.

3.5.4 Example with Steady State Errors

When there are both measurement errors and stochastic fluctuations
in acceleration, it is possible for there to be a balance between the gain
in information due to additional measurements and the loss in information
due to engine fluctuations. A simplified model of the system will be used
here to represent error propagation and to determine the steady state
balence. For this simplified model, the additional loss (burning time)
due to measurement errors will be calculated numerically using representative
numerical values for engine fluctuations and measurement accuracy and rate.
It is agsumed that the deviations in acceleration are exponentially

correlated so that

E[&a(t') éa(t)] = é‘i; e~ Y(t'-t) (5.20)

where t' is greater than t and l/Y could be considered the correlation time.
For the purpose of estimation, time will be the independent veriable so the

equations of motion in Equation (2.1) can be written

d
r d—t'e = Ve
d
= (rve) = ra cosu
2
4 = _____L_Ve-lr + a sing (5.21)
a 'r -
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A three-dimensional version of the estimation problem has been derived for
a near-Earth satellite in Reference 7. The fluctuations in agceleration
there are due to stochastic fluctuations in atmospheric drag. In that
paper there are eight state variables; a set of six mean orbit elements
which give position and velocity, as well as two additional state variables
which represent the average value of the acceleration and the instantaneous
deviation in acceleration (6a). For the estimation problem considered here,
the following, much simpler model of the system will be used.

The equations of motion are

d

r Ty 60 = &ve
d =
-d—téve— 8a
S ta = - yba+u (5.22)
at

where u is a white noise process so that

E [u(t') u(t)] = q & (t'-t)

where 8*(t'-t) is the Dirac delta function.

Nolsy measurements of anguler position 68 are made every 7 units of nor-
malized time with root-mean-square accuracy Oﬁ redians. The system in
Equation (5.22) represents circumferentisl motion where r69, bvy, Se are
position, velocity, and acceleration, respectively. Furthermore, it is
assumed that (1) the radial distance r varies slowly and is known very
sccurately so that 1t need not be estimated, and (2) the covariance in

radial velocity is assumed to be equal to the covariance in circumferential

velocity but uncorrelsted with it so that

cov [bvr] = coV [Gve]
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In the small r region the above assumptions are not unreasonable, although

the error in estimating radial velocity should probably be somewhat less

than that in circumferential velocity. These assumptions are not valid in

the large r region, but the obtained estimate of the state covariance will

be extended to the large r region anyway.

Iet P be the 3x3 matrix which represents the covariance of the errors

in estimating the state réo, 6ve, 6a. The solution to the steady state ver-

sion of the estimation problem 1s obtained from the matrix differential

equation representing the propagation of errors.8’9
0 = %E = FP+PF - PstP+q

where, for the model presented here,

F = 0 1
0 1
L 0O 0O -y
s~ 1o o)
o 0
0O 0O ©o°
8 = r2 th T
Q = (0] 0 0
0O O
0O 0 gq

(5.23)

and the discrete measurements have been approximated by an equivalent set

of contimuous measurements. An approximate solution to Equation (5.23) when

1/6
v(s/q)  1s somewhat smaller than 1¥* is

T 1l
The assumption Y(s/q) /6 is much smaller than 1 corresponds to assuming that

many relatively accurate measurements are taken during the time 1/y.
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6 1/6 1
P = 2 2 ‘1/ Ppp = 38° ot
P, = 2 62/3 J1/3 by = 2 s1/3 2/3
1 h
Py = 8% & by = 2 51/6 q5/5
Pyy = Pyy (5.24)

where pij are the components of the matrix P. Because p11 is the covariance
of rb6, it must be divided by r2 to obtain the covariance of 6§6. Hence,

the covariance of the errors in 66, 6ve, da are

CO'V(6G) = Pll/re CO‘V(&VG) = p22
cov(86, bv,) = py,/r cov(bvy ba) = pyg
COV(GG, 6&) = Pl3/r . COV(&) = p33 (5-25)

To obtain numerical values for the additional loss due to measurement

errors, let

s = 1077 r2

q = 10_3

The value for s corresponds to measurements with a root-mean-square accuracy
of 1073 redians taken once each 10”3 normalized units of time. (From Table 1
for the planet Earth with engine acceleration O.k4 cm/seca, this is about once
each seven minutes.) The value for q corresponds to a steady state root-mean-
square deviation in acceleration of about two percent with 1/y equal to one
normalized unit of time. (From Table 1, this means that it takes about 3.3
days for a particular deviation in acceleration to die out.)

The additional loss will be calculated numerically from Equation (5.19)

which 1s repeated here.
re 2
2 _ 1 OH
E [6 J] = l = ;;é cov (c1 bvg + e, BV + cg 88 + c) 6a) dr

The guidance coefficients in Figure 3 are used in the outward spiral modified

in the large r region by Equation (5.13) which includes an edditional loss
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due to terminal errors. The guidance coefficient c), is approximated
by Equation (5.8) and in the large r region ¢, rapidly goes to zero.
The additional loss due to measurement errors is almost entirely due to

errors in estimating the final angle 6_ and it is given by

E [62 J] = .75k - 1078

where k is defined in Equation (5.9) and it relates the additional loss at

the inward spiral due to terminal errors in the outward spiral,

> 2
J = 1k (s0)

©
For k = 10“ the additional normalized time due to errors in estimating the
final angle 6_ is 7.5 x 10—3 which, for the case of leaving Earth with a = 0.4
cm/seca, is only thirty minutes and is extremely small in comparison with a
typical burn time of thirty days.

For the inward spiral, the guidance coefficients in Figure 6 are
used and in the small r region they are modified by Equation (5.15). The
guidance coefficient ch is approximated by Equation (5.8). The additional

loss due to measurement errors is approximately

E [62 J‘] =7.103 + 4 k, 1077
where the first term is primarily due to errors in estimating 6a in the
large r region and the second term (which includes the constant multiplier
k2) is due to errors in estimating the terminal value of Vf in the small r
region. Errors in estimating 6a are important in the large r region because
changing the acceleration a changes the initial point at which the engine
should be turned on. Therefore, if the initial value of & is not known
because of measurement errors and engine fluctuations, the vehicle is coming

in on & non-optimum trajectory in the large r region.
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For this example, a maximur value for the constant multiplier k2
might be ebout 103 because for that value the modified guidance coefficients
in Equation (5.15) are essentially the same as the guldance coefficients in
Figure 6 until less than one revolution before the engine is turned off.

For k2 = 103 the additional time on the inward spiral would also be about
thirty mimates. Thus, as one might expect, for the model presented here
and long term fluctuations in engine acceleration with rms value of about

two percent, the additional loss due to estimation errors is quite small

on both the outward spiral and the inward spiral.
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Appendix A
DERIVATION OF ANALYTIC SOLUTION FOR
NEAR-PLANET REGION

The analytic solution for r will be derived for the case where A3 is

zero. The differential equations which must be satisfied are presented in

Equation (A.l) where A, is zero and \, is minus one.

3

+

Mo Yo 1
dr r

J
=
]
"l
1
4

<
g

Y
N

A A A
S P R (A.1)

The solution is assumed to be of the form given by Equation (A.2) where the

A's are to be determined.

vr=2r 23 r + Av
A, = 1+grl‘+r2ml
2 L
A, = T (L-33r +Ax2) (A.2)

When the A's are all zero, Equation (A.2) satisfies Equation (A.1) up to
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*
ru. Substituting Equation (A.2) into Equation (A.1l) and keeping terms

of order A/r3 and A/r yields Equation (A.3).

-Av'e- ﬂ-é—i— --2—i§ 0 0 ] -AVB-
av' Zi—3 - 3 o = av,,
O R S R 0y
', j - l:: + ij - 5}-' {[ Bh,

) J. 2

(A.3)
where the prime indicates the derivative with respect to r.

There are also terms of order A-A/r3 which have been discarded.
Because there are terms of order A/r3 in Equation (A.3) and because %/r3
approximates d6/dr, a solution containing sines and cosines suggests itself.
In particular, a solution of the form of Equation (A.4t), with the coeffi-
cients A, A,, C, and C, (some slowly varying functions of r), satisfies the

dominant part (A/r3 terms) of Equation (A.3).

Ave = Al sin 6 + A2 cos 9

Avr = -Al cos 6 + A2 sin 0

Akl = C1 sin 6 + C2 cos © o

B, = -(A +31) cos @ + (A, + ) oin @ (A1)

More precisely, substituting Equation (A.%4) into Equation (A.3) yields

Equation (A.5).

A'y 8in 8 + A', cos 8 = -% (A, s1n © + A, coa @)

*The next terms in the expression for v, and A, in Equation (A.2) are -307 é r8

and -352 % re, respectively. Adding those two terms satisfies Equation (A.1)
up to r6 when the A's are zero.
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2
-m
¢, = Z ()2 - 6m) B, v L cosp

i=1
2 1]
¢, = > (2-16m)B, r ‘sinp (a.7)
i=1
where
_ T =410
m = B
0
m, = LTf0 (2.8)

Substituting Equation (A.7) into Equations (A.2) and (A.L) yields the
analytic solution. For emall non-zero )\3, Equation (A.6) and the solution

in Equation (A.7) are slightly perturbed.
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L., SUMMARY

4.1 Summary of Results

4,1.1 Midcourse Guidance Using High-Thrust Engines (Chapter 2)

Our studies in this area have been concerned with extending in
various ways the theory of minimum effort control developed by Breaicwell
and Strie‘bel.1 The various extensions and their results can be summarized
as follows:

A) Control of Several Terminal Components (Section 5)

It is shown that the optimum corrective strategy for controlling
independently the rms accuracies of the in-plane and the out-of-plane termi-
nal positions as well as thelr velocities has essentially the same charac-
teristic as the unidimensional problem of the basic minimum effort theory.
The optimal control history consists of an initial period of no control,
followed by & period of continuous control, and finally & period of no
control with possibly an impulse at the end. The numerical computation
requires the proper guessing of the ratio of the initial values of adjoint
variables and, in general, an iterative procedure is necessary in order to
satisfy the specified terminal accuracies.

B) Optimization of the Control Histories as well as the Observation Rate

and the Selection Among a Choice of Observations (Section 7

The problem considered here is to incorporate into the solution of
the basic minimum effort theory the additional feature of selecting a most
advantageous measurement among a choice of observations and the corresponding
rate of observation subject to the following constraints: (1) a maximum
observation rate and (2) a fixed total number of measurements. It is shown
that the solution, in general, includes intermediate values of observation

rates. The optimal policy consists of periods of measuring separated by



Periods of no measurement or corrective action. Each measurement period
starts at maximm rate with a subperiod without corrective action. This

is followed by & subperiod of graduel (continuous) correction and ends with
an impulsive partial correction of the terminal miss distance. The measur-
ing prior to the impulse may be either at maximum rate or at an intermediate
lower rate. In addition, if a choice 1s available at any time between
various possible measurements, the optimal solution automaticklly selects
the one which 1s most advantageous.

c. Optimization of the Control Histories Including the Effect of Mechaniza-

tion Errors (Section 8)

This study extends the basic minumum effort theory to include the case
when random engine mechanization errors are taken into account. Included
are the engine execution error, which is error in the magnitude of the velo-
city correction along the direction of the thrust, and the accelerometer
reading error, which is an error in the knowledge of the actual amount of
velocity correction used. The latter type of error causes a loss of informa-
tion which lncreases the uncertainty of the orbit. A computational method
is found for obtaining the solution of this problem assuming constant vari-
ances for both types of errors. The method is based on Dynamic Programming
and leads to a solution which ig in part analytical and in part camputational.
Typical results indicate that:

1) Optimum Corrective strategy is discrete when engine mechaniza-
tion errors are included; hence, there exists an optimum number of correc-
tions for a given size of mechanization error.

2) The improvement in velocity correction obtained using more than
three or four corrections is negligibly small.

D. Optimum Nonlinear Control Strategy (Section 9)

One of the important simplifying assumptions in the development of the
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basic minimum effort theory is the requirement that the magnitude of the
applied control acceleration at any time be linearly related (with a variable
gain) to the predicted miss distance at that time. In the present study,
this assumption is removed. For the sake of simplicity, only a discrete
system has been considered. It is shown that a corrective velocity is
applied if, and only if, the predicted miss disténce at the time ti lies
above (or below) a certain number, say zZy (or -zi) and that the effect of

the control is to bring the predicted miss distance after the correction to
zi (or -zi). A relatively simple computation procedure for cbtaining zi
recursively based on the technique of Dynamic Programming is given. 1In addi-
tion, consideration has also been given to the hard constraint problem, in
which the total amount of velocity correction capability is limited and
specified in advance. The characteristic of the solution is very different.

* *
In this case, there exists two numbers, say zg >z, > 0, such that (1) no

1

control is applied if the magnitude of the predicted miss distance is less
*

than z, -, (2) all the velocity capability available is used if the magnitude

e
of the predicted miss 1s greater than z , and (3) a certain intermediate

i
* *H
control is applied otherwise. The z and z are functions of the available

i i
corrective velocity capability and appear to be obtainable only in tabulated
form by using Dynamic Programming.
D. Computer Program for Studying Guidance Problems for Typical Interplane-
tary Trips* (Section 10)
Section 10 of Chapter 2 reported some related work in connection with
the study of guidance requirements for typical interplanetary trips. A com-

puter program is developed which (1) performs a linear error analysis of

typical interplanetary trajectories with assumed rms injection errors and

*
This was not required by the contract.
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measurement histories, and (2) computes a trajectory correction strategy
based on the basic minimum effort theory. It includes a near-optimum dis-
crete trajectory correction strategy using impulsive corrections whose
spacings are chosen to approximate the ideal continuous strategy. The
snalysis of these near-optimum discrete strategies extends the study by a
Monte Carlo simulation to include the effect of correction mechanization
errors as well as the effect of varying the time of the last correction.
Orbit determination is assumed to be based on the information obtained
from onboard angular measurements as well as Earth-based radar. Computer
results for two trips are given for typical injection errors indicating
the total velocity correction as a function of the required rms accuracy
for various information histories. The two trips are: (1) a 204-day trip

to Mers, and (2) a 245-day swingby trip, Earth-Venus-Mars.

4.1.2 Planetocentric Guidance Using Low-Thrust Engines (Chapter 3)

The low-thrust portion of the work 1s concerned with the guidance
of a vehicle with a constant impulse low-thrust engine while spiraling away
from one planet, and later, in toward another planet. Guidance is achieved
by changing the direction of thrust rather than the magnitude. The optimi-
zation problem - to reach a specified escape energy with minimum mass expendi-
ture (mininum time, in this case) - is solved using the calculus of varia-
tions; the guldance problem is solved by using a neighboring optimum con-
trol scheme which generates a linear feedback control law which minimizes
the mass expenditure while attempting to meet a terminal constraint on
direction of escape. The terminal constraint for the subsequent arrival
spiral is horizontal circular velocity at a desired radial distance. 1In

particular, the results of the study may be summarized as follows:
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o The optimum guidance coefficients for both the outward and
inward spiral are derived. The guidance law using radial
distance as the independent variable is transformed to one using
energy as the independent variable.

o In both the near-planet and far-planet regions, approximate
analytic solutions are derived for both the optimum and
neighboring optimum tra)ectories and, in some cases, these
permit the guidance coefficients to be written in analytic
form.

o For the inward spiral, the optimum turn-on time is derived as
a function of the radial distance and the angular momentum.

o0 The guidance law is modified to account for long term (pre-
dictable) fluctuations in engine acceleration and the guidance
coefficients are adjusted to account for the effect of measure-
ment errors in estimating the terminal quantities. The latter
adjustment prevents the coefficients from becoming large without
bound as the time of engine cutoff approaches.

o A method is presented for calculating the effect of measurement
errors on mass expenditure. This error analysis 1s extended to
include the case of statistical fluctuations in engine thrust.

For a simplified model of the system, numerical results are obtained
for the additional mass expenditure. The simplified model illustrates the
steady state balance of information, 1.e., when the loss of information due
to statistical fluctuations in engine acceleration just balances the gain

in information due to additional measurements.

4.2 Publications
Most of the investigations presented in this report have been (or will

be) published in outside journals. Listed below are the papers which have
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4.3 Recommendations

(1) A three-dimensional version of the program described in Section
2.10 should be written to serve as a realistic guide to an optimal control
policy for high-thrust interplanetary trajectories.

(11) More basic work is needed to investigate the strictly optimal
nonlinear strategies in more than one dimension, whether in minimizing average
fuel consumption for given terminal accuracy or in minimizing terminal error

for fixed amount of fuel available.

L-6



(111) The neighboring-optimum control and error analysis, discussed
in Section 3 for low-thrust spiral trajectories, should be applied to com-

bination high and low thrust interplanetary trajectories.
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